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Aging and diffusion in low dimensional environments
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We study out-of-equilibrium dynamics and aging for a particle diffusing in one-dimensional environments,
such as the random force Sinai model, as a toy model for low dimensional systems. We study fluctuations of
two time (tw ,t) quantities from the probability distributionQ(z,t,tw) of the relative displacementz5x(t)
2x(tw) in the limit of large waiting timetw→` using numerical and analytical techniques. We find three
generic large time regimes:~i! a quasiequilibrium regime~finite t5t2tw) whereQ(z,t) satisfies a general
fluctuation dissipation theorem equation,~ii ! an asymptotic diffusion regime for large time separation where

Q(z)dz;Q̄@L(t)/L(tw)#dz/L(t), and ~iii ! an intermediate ‘‘aging’’ regime for intermediate time separation
@h(t)/h(tw) finite#, with Q(z,t,t8)5 f „z,h(t)/h(t8)…. In the unbiased Sinai model we find numerical evidence
for regimes~i! and ~ii !, and for~iii ! with Q(z,t,t8)5Q0(z) f „h(t)/h(t8)… andh(t); lnt. Sinceh(t);L(t) in
Sinai’s model there is a singularity in the diffusion regime to allow for regime~iii !. A directed model, related
to the biased Sinai model, is solved and shows~ii ! and ~iii ! with strong non-self-averaging properties. Simi-
larities and differences with mean field results are discussed. A general approach using scaling of next highest
encountered barriers is proposed to predict aging properties,h(t), and f (x) in landscapes with fast growing
barriers. It accounts qualitatively for aging in Sinai’s model. We also identify a mechanism for aging in low
dimensional phase space corresponding to an almost degeneracy of barriers. We illustrate this mechanism by
introducing an exactly solvable model, with barriers and wells, which shows clearly diffusion and aging
regimes with a rich variety of functionsh(t). @S1063-651X~98!15202-9#

PACS number~s!: 64.60.Cn, 64.60.Ht, 64.60.My, 75.10.Nr
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I. INTRODUCTION

There is presently considerable interest in out-
equilibrium dynamical processes. For systems with
quenched disorder phenomena such as coarsening an
main growth are important to understand@1#. In systems
such as spin glasses@2–6#, random fields, interfaces, an
glasses in vortex systems@7–10#, which are dominated by
quenched disorder and ultraslow relaxations, a detailed
derstanding of out-of-equilibrium dynamics becomes ab
lutely necessary to make contact with numerical simulati
and experiments. These usually involve studying relaxa
dynamics from an initial configuration att50 ~e.g., uncor-
related! and asking about correlations in the systems betw
two later times t8 ~also called tw the waiting time! and
t.t8. An interesting question to ask is what happens wh
both t and t8 are taken to infinity. Since there are of cour
many ways to taket,t8 to infinity one wishes to classify the
possible regimes.

In out-of-equilibrium situations the usual properties
equilibrium dynamics do not hold. Such properties are
time translational invariance~TTI!, i.e., the dependence o
t2t8 only of the correlation functions as well as the fluctu
tion dissipation theorem~FDT!, which relates linear respons
to time derivatives of correlation functions. A first questio
to ask is how to taket,t8 to infinity and still recover an
equilibrium regime.

*Unité associe´e du CNRS~URA 280!, UniversitéParis 6.
†Laboratoire propre du CNRS associe´e à l’ENS et à l’Université

Paris–Sud.
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Glassy systems with quenched disorder were found to
hibit a variety of nonequilibrium properties often generica
termed ‘‘aging.’’ Loosely speaking, this means that the pro
erties of the system are governed by the age of the sys
tw , i.e., the time after the quench@11–13#. For instance, it is
expected that correlation functions in these systems have
pendences such ast/tw . This type of dependence is als
found in simpler out-of-equilibrium systems such as coa
ening in spin systems without disorder@1#, which also ex-
hibit dependences of correlation functions of the fo
L(t)/L(tw). This dependence originates from the growth
domains of sizeL(t) and diffusion of the domain walls. A
stronger form of aging seems to be observed@2,3#, and was
proposed for spin glasses where the linear response sh
memory effects, e.g., the remanent linear magnetization a
applying a field during timetw decays very slowly over a
time scale set only bytw . Other puzzling phenomena such
memory under thermal cycling are observed@2,4,5#. There is
at present no theory that would account fully for all the
phenomena@14#, and understanding is only partial. Ideas a
scaling arguments borrowed from domain growth and coa
ening were also applied to disordered models~‘‘droplet pic-
ture’’ @6#!, but it is unclear whether they can account for
situations. More recently exact solutions were obtained@15#
for the out-of-equilibrium dynamics of several mean-fie
models@16,17# , some of which were found to exhibit stron
aging properties. It makes several nontrivial predictions@15#
for both the correlation functionC(t,t8) and the response
function R(t,t8) of these mean-field modelsin the limit of
large times t,t8. The asymptotic time regime in these mode
has been successfully resolved, under some physical ass
6296 © 1998 The American Physical Society
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57 6297AGING AND DIFFUSION IN LOW DIMENSIONAL . . .
tions, and turns out to be in direct correspondence with
risi’s static replica symmetry breaking solution~with some
important differences!. However, the matching of the sma
time regime to the asymptotic one remains problematic
general picture for aging dynamics in mean field was p
posed@15#. The resemblance with some of the features
served in spin glass experiments seems encouraging, th
many points remain unclear@18#. There have been some a
tempts to classify the various aging behaviors, and to dif
entiate the domain growth coarsening type of ‘‘aging’’ fro
a stronger type analogous to what is found in mean-fi
models@19#. Despite these recent advances, there is, h
ever, at present no detailed microscopic understanding o
aging phenomena.

An elegant microscopic mechanism for aging was p
posed some time ago by Feigelman and Vinokur~FV! @20# in
the context of diffusion in a one-dimensional environme
Using a semiquantitative analysis, they proposed thattraps
with a wide distribution of waiting times~a diverging first
moment^t&5`) would naturally lead to aging phenomen
and waiting time dependence. The idea is that because^t&
5`, at time tw the system is typically in a trap of releas
time ;tw and thus the diffusing particle sees potential b
riers that effectively grow withtw . The Feigelman-Vinokur
trap model was later used by Bouchaud@21#, on the basis of
previous work on wide distributions of waiting times@22–
27# to describe various situations, some inspired by the s
ics of mean-field models@28#. It is important to note, how-
ever, that in the one-dimensional Sinai model with a b
originally studied by FV and in Ref.@23# the wide distribu-
tions can be shown to bedynamically generated and no
artificially set by hand. Despite the phenomenological app
of the FV mechanism for aging it is unclear how far it can
pushed@21# to describe all the physics of glasses and prov
a nonartificial, dynamically generated mechanism for agi
In fact rather different scenarios were proposed to unders
more microscopically mean-field dynamics@29#.

In this paper we study some simple one-dimensional
fusion models, such as Sinai’s model, and investigate
some detail their out-of-equilibrium dynamics. We will n
attempt to propose any phenomenological model for agin
real glasses but simply study the extreme case of low dim
sional phase space and identify the various possible la
time regimes. These low dimensional models@30,31# are
dominated by activated dynamics over energy barriers
stand at the opposite end from mean-field models. One
hope that they serve as toy models for diffusion in low
mensional space and give some insight into finite dimens
In particular, one can check whether some of the ideas in
duced in mean-field theory carry through. Specifica
mean-field generalizations of Sinai’s model~i.e., diffusion in
a d-dimensional random potential withd→`) were solved
@16# and can be directly compared. The advantage of
one-dimensional model is that the correlation and respo
functions can in principle be computed numerically up
very large times. Note that a simulation of Sinai’s model w
performed recently in@32#, but with a much too slow algo
rithm to reach significant times, as we will discuss. A su
mary of the present study was contained in@33#.

It becomes clear in our study that here thefull probability
distribution should be studied, while in mean-field theory
a-
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is enough to study the second moment. For a diffusing p
ticle the interesting quantity is the distributionQ(z,t,t8) of
displacementsz5x(t)2x(t8) between timest and t8 ~the
particle having started att50 at a random position! with a
translational or configurational average ofQ. The second
momentB(t,t8)5^z2&Q was computed in mean field@16#.
The results are as follows fort→` and t8→`.

~i! There is aquasiequilibrium regimefor finite t5t2t8
where TTI@B(t,t8)5B(t)# and FDT theorems hold. In tha
regime displacements are bounded sinceB(t→`)5bEA .

~ii ! For more separated timesB(t,t8).bEA keeps grow-
ing. This is theaging regimewhereB(t,t8) remains a fixed
numberB(t,t8)5B provided t and t8 grow in some well
defined way, i.e., withh(t)/h(t8) a fixed number~a function
of B). In that very nontrivial regime some new generaliz
FDT theorems hold, according to the general theory of@15#.
The functionh(t) is not determined by the large time mea
field solution, and at present must be determined num
cally. The value ofB can eventually be chosen as large
desired. For largeB this regime crosses over into a diffusio
regime. Interestingly there is a singularity at the beginning
the aging regime with a nontrivial exponentb, i.e., the func-
tion B(t,t8)5B@h(t)/h(t8)# is nonanalytic as a function o
h(t)/h(t8)21. A singularity at the beginning of the agin
regime is indeed found in a variety of experimental glas
systems. The exponentb, relevant for mode coupling theo
ries of real glasses@12#, was obtained analytically in@16#.

Note also that in mean field there is some mathemat
correspondence between two timest,t8 and replica pairsa,b.
There, roughly speaking, the quasiequilibrium regime~i! is
found to correspond to the replica symmetric part of t
static solution, while the aging regime~ii ! corresponds to the
RSB part of the static solution. The correspondence is in
not perfect because dynamical quantities do not always
incide with their static counterpart@15,34,16#.

It is important to know what remains of the above d
namical mean-field scenario in low dimensional mode
such as the models studied here, and we will attempt to g
some elements of an answer. Obviously this scenario wil
modified since we now have to deal with full distribution
Q(z,t,t8). One would like, e.g., to identify possible mech
nisms that can reproduce aging with nontrivial functionsh(t)
and exponentsb.

We will use Sinai’s model as a starting point. It is inte
esting because it is related to coarsening models with di
der. For instance, it can model a single interface in a rand
field model, or motion of kinks in vortex lines, or dislocatio
loops, in the presence of point disorder. The dynamics
Sinai’s model has been studied extensively@35–44,23#. The
model was shown to exhibit ultraslow diffusion̂x(t)2&
;(lnt)4. The response to a driving forcef was also shown
to be quite anomalous, with several phases. There is a thr
old force such that forf , f c the velocity vanishesV50 and
diffusion is sublinear̂ x(t)2&;t2m with a continuously vari-
able exponentm5 f / f c . For f . f c one hasV;( f 2 f c) and
similar transitions in higher order moments of the displa
ment take place at largerf . The physics of this anomalou
response was also understood and shown to be rel
@23,36# to the existence of barriers with an exponential d
tribution of energy heights, resulting in power-law distrib
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6298 57LAURENT LALOUX AND PIERRE Le DOUSSAL
tions of trapping times and Le´vy distributions for first pas-
sage times.
Let us illustrate some of the questions by some simple c
sideration. In the case of an applied bias, even thefirst mo-
mentof the displacement already contains interesting inf
mation. It is known@36,23# that one has exactly, at larg
times^x(t)2x(0)&5Ctm whereC depends on the details o
the model. The aging nature of this expression is clear s
one can write

^x~ t !2x~ t8!&5C~ tm2t8m!;Cm
t

tw
12m

~1!

for t85tw , t5tw1t. This indicates that there is an agin
regime in this model since one can taket→` and tw→`
keeping^x(t)2x(t8)& a fixed number, provided

t;tw
12m . ~2!

In particular, in the limit wheretw goes to infinity first, there
is no motion at all in any finite time interval. We also no
that the above result can be rewritten as

^x~ t !2x~ t8!&5Cln
h~ t !

h~ t8!
, ~3!

whereh(t)5exp(tm). This form~3! @with h(t) unspecified# is
of the type found in large time solutions of mean-field mo
els as mentioned above. Similarly, subaging forms forh(t)
5exp@(lnt)a# with a.1, as observed in experiments@18#,
could in principle originate from a logarithmic diffusion pro
cess. Indeed one can write

lnat2 lnat85 ln
h~ t !

h~ t8!
;

t

~ tw / lna21tw!
, ~4!

with the observedh(t). One would thus like to investigat
these analogies further.

We will thus first study Sinai’s model in Sec. II~symmet-
ric model! and in Sec. III~directed model!. Then we will
give in Sec. IV a general discussion of barrier mechanis
for aging that we believe allow one to understand the res
obtained on Sinai’s model. We introduce a method to e
mate aging functions by looking at the sequences of n
highest barriers. Finally, in Sec. V we introduce and solv
model based on these considerations that exhibits nontr
aging and diffusion behavior.

II. SYMMETRIC SINAI MODEL

A. The model

In this section we study the one-dimensional Sinai mo
@38–41,23#. In its continuous version it is described by th
Langevin equation:

dx

dt
5F„x~ t !…1h~ t !, ~5!

where ^h(t)h(t8)&52Td(t2t8) is the thermal noise and
F(x)F(x8)5sd(x2x8) is a quenched random force, whic
n-

-

ce

-

s
ts
i-
xt
a
ial

l

is Gaussian and uncorrelated. It may have an averageF(x)
5 f . Writing F(x)52dU(x)/dx describes the thermal mo
tion of a particle in a one-dimensional Gaussian random
tential landscapeU(x). The landscape@x,U(x)# can be seen
as a trajectory of a random walker (x playing then the role of
the time!. In the general casef .0 the lanscape is tilted~the
walker experiences a bias! but we will only consider here the
casef 50 ~symmetric Sinai model!. Then the random poten
tial has long range correlations:

@U~x!2U~y!#25sux2yu. ~6!

Thus barriers grow with a scale that results in an anom
lously slow dynamics ^@x(t)2x(0)#2&;(lnt)4. The
N-dimensional version of this model @i.e., x
5(x1 ,x2 , . . . ,xN)# was solved in the limitN→` in Ref.
@16#.

In this section we study a space discretized version
Sinai’s model, which can be easily studied numerically. It
expected that this discretized version has the same large
physics as the continuous model~this was shown for some
quantities in the weak disorder limit@22,23#. It is defined by
a Fokker-Planck~FP! equation:

dPn~ t !

dt
5~HFP!nmPm~ t !5Wn,n11Pn11~ t !1Wn,n21Pn21~ t !

2~Wn11,n1Wn21,n!Pn~ t !, ~7!

wherePn(t) is the probability that a particle is at siten at
time t ~with some initial condition att50). The hopping
ratesWn11,n ,Wn21,n are quenched random variables. It
convenient to parametrize these rates as in Ref.@23# in the
form

Wn21,n5e2fn Wn,n215efn. ~8!

This describes effectively the Arrhenius diffusion of a pa
ticle on a one-dimensional lattice in a random potentialUn

522(k50
n fk . There is in effect a force 2fn on the link

between siten21 andn. The equilibrium solution of Eq. 7
corresponding to zero link currentJn,n215Wn,n21Pn21

2Wn21,nPn50 is Pn
eq5e2Un. Here temperature is set toT

51. In the discrete Sinai model the variablesfn are chosen
Gaussian independent from site to site, withfnfn8
5(s/4)dnn8 and the random potential thus follows a Gaus
ian discrete random walk as a function ofn, with correlations
(Un2Un8)

25sun2n8u.
The important quantity to determine is the Green funct

P(n,tun0 ,t0) (t>t0) of the FP operatorHFP in a given en-
vironment. It is defined as the solution of Eq.~7! with initial
conditionP(n,t0un0 ,t0)5dnn0

.

We have computed numericallyP(n,tun0 ,t0) using exact
diagonalization of the corresponding Schro¨dinger operator
on a finite size ring. This operator is a tridiagonal symmet
matrix, which can be easily diagonalized for large sizeL.
The method, as well as the expressions for the correla
and response functions, is detailed in Appendix A. We u
L11 sitesk50,L with both reflexive and periodic boundar
conditions. We have used up toL5250 sites and average
over 103 and 53103 disorder configurations. Because S
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57 6299AGING AND DIFFUSION IN LOW DIMENSIONAL . . .
nai’s diffusion is so slow, we were able to study times up
1015 without spurious effects~edges, precision!. We useds
52 in all simulations and checked the consistency of
results with several random number generators.

From this exact expression one can average either on
a product of two of these Green functions to obtain sin
time or two times quantities, respectively. For finite time
translational averages~with, e.g., uniform initial measure in
an infinite single environment! and averages over disorde
should coincide. Note that this will not be correct in a ve
special case studied below of a periodic environment.
now describe the results and their interpretation using sim
arguments.

FIG. 1. Single time averaged diffusion front: at large time o
simulations cannot be distinguished from Kesten’s prediction.

denotex̄5x/xrms(t). L5125 and 53103 configurations.

FIG. 2. Same as Fig. 1 in logarithmic scale forP.
e

or
e
,

e
le

B. Single time quantities

Averaged single time quantities can be obtained from
disorder averaged Green functionP(n,tun0,0). There are
some exactly known results for these single time quanti
and we will thus start by comparing with these results~as a
check of our simulations!.

In @22# the averaged probability density at the orig
P(n0 ,tun0,0) was computed exactly in the continuum lim
for all times t. It describes the weak disorder universal b
havior~see@23#!. At larget the complete scaling form for the
averaged diffusion front, i.e., the distribution of the variable
n/( lnt)2 was obtained in @42# as P(n,tu0,0)
.(lnt)22p@n(lnt)22#. The functionp(x) is ~up to a constant
rescaling!

p~x!5
2

p(
k50

1`
~21!k

2k11
expS 2

~2k11!2p2

8
uxu D . ~9!

We have computed numericallyP(n,tu0,0)̄and the x
;(lnt)2 law as a check of our program. In Figs. 1 and 2 w
have plotted the scaling functionp@x# as it is determined
numerically and the analytic result of Kesten~we have fixed
the scale by imposing equality of the second moment and
denotexrms5A^x2(t)&). One can see that the agreement
excellent. In our opinion, it improves considerably on
earlier determination by Nauenberg@43#. The behaviorx
;@ ln(t/t0)#2 is plotted in Fig. 3 and also agrees. We ha
not attempted to fit the amplitude to known results~we have
checked that the order of magnitude is correct! since we were
satisfied with the agreement in Fig. 1.

We now turn to two time quantities.

C. Two time quantities

There are no analytical results available at present, to
knowledge, for two time quantities. This makes the nume
cal simulation all the more important.

r
e

FIG. 3. Numerical data compared to Sinai’s diffusion lawx
;xrms(t); ln(t/t0)2. L5125 and 53103 configurations.
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6300 57LAURENT LALOUX AND PIERRE Le DOUSSAL
We have computed numerically the two time averag
Green functionP(n,tun8,t8)P(n8,t8un0 ,t050). It is a com-
plicated object that is difficult to analyze. Thus we ha
started by computing, as in mean-field models, the confi
rationally averaged mean squared displacement.

B~ t,t8!5^@x~ t !2x~ t8!#2&5 (
n,n8

~n2n8!2

3P~n,tun8,t8!P~n8,t8un0 ,t050!. ~10!

The best way is to plot it as a function oft2t8 for differ-
ent waiting timestw5t8. It is represented in Fig. 4. One se
that it clearly does not depend only ont2t8 and that, the
larger the waiting time, the slower it grows. The dynam
slows down considerably ast8→`. This is very reminiscent
of what happens in mean-field models. One also sees tha
effective plateau develops ast8 becomes larger. In mea
field it would be a true plateau@16# that defines the Edwards
Anderson order parameterbEA . Thus here an importan
question is whether there is a finite limit forB(tw1t,tw) as
tw@t@1 as in the mean-field model. The answer to t
question isnegative. This is because, as will be discuss
below, in finite dimension, contrary to mean field, while t
distribution ofx(t)2x(t8) converges towards a limit, its sec
ond cumulant is infinite. In fact studying only the seco
cumulantB(tw1t,tw) is of little help in the present problem
One needs to study the full disorder averaged distribution
relative displacements:

Q~z,t,tw!5E dx8P~x81z,tux8,tw!P~x8,twu0,t050!

~11!

FIG. 4. Mean squared separationB(t5tw1t,tw) as a function
of t for severalt;tw . A limit curve B(t) can be seen, butB(t)
keeps growing witht while in mean field it would go to a constan
bEA5B(t5`). L5125 and 103 configurations.
d

-

an

s

f

and not only its second cumulant. We have found that wh
looking at that distribution, several regimes can be identifi

D. Quasiequilibrium regime

The first question to ask is whether there is a quasieq
librium regime whent and tw are close together. It can b
defined, for instance, ast5tw1t with t fixed and finite~and
tw→`). In mean field this would correspond to the FD
regime, where time translational invariance and the fluct
tion dissipation theorem are found to hold.

One can thus ask whether the following limit distributio
exists:

Q~z,t!5 lim
tw→`

lim
L→`

Q~z,tw1t,tw!, ~12!

whereL is the size of the system. One can also ask whet
in that limit some equilibrium theorems hold.

We are not able to answer this important question rig
ously in all generality and we encourage other workers to
so. We will however provide some elements which we ho
will shed some light on the issues.

One strategy is to first study the case of aninfinite peri-
odic mediumbut with a very large period L0 ~i.e., almost
disordered!. There some things can be shown whentw is
very large. Of course this is cheating a bit since the id
would be to takeL0→` eventually, and thus this is like
interverting the limittw→` and L0→`. It does give some
insight though. Thus we will then check, using numerics a
physical arguments, whether it can be extended to a non
riodic case.

FIG. 5. Convergence, for a fixedt, of Q(z,tw1t,tw) ~repre-
sented here fortw5105 and tw5431012) towardsQeq(z,t) com-
puted here from formulas~ 18!,~ 19! ~curve called ‘‘tw5 infinity’’
in the figure!. The limit curveQ(z,t5`) is shown by comparison
~curve called ‘‘fit’’!. L5200 and 53103 configurations.
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1. A periodic model

We are considering an infinite periodic medium. We a
sume that the potentialU(x) is periodic, which correspond
to the situation with no drift. One can generalize to the c
with a bias by taking a periodic force~using the results of
@44#. We will first consider a single environment~no con-
figurational averages!.

We are interested in the following distribution:
e

th

-
tr
to

n

p
e

ll
-

e

QL0
~z,tw1t,tw!5E

2`

1`

dx8PL0
~x81z,tw1tux8twux00!.

~13!

It can be written as a sum over periods:
QL0
~z,tw1t,tw!5(

k
E

0

L0
dx8PL0

~x81k1z,tw1tux81k,tw!PL0
~x81k,twux00! ~14!

5E
0

L0
dx8PL0

~x81z,tux8,0!P̃L0
~x8,twux00!, ~15!
me
-
e
d

ged

are
i-
5.
tle,

is is

V
s for

or-
where we have defined the periodized Green function

P̃L0
~x8,t8ux00!5(

k
PL0

~x81kL,t8ux00! ~16!

and we have used the periodicity of the disord
PL0

(x,tux8,t8)5PL0
(x1mL,tux81mL,t8). So, up to now it

is exact for any configuration of the disorder.
Since the periodized functionP̃ is in fact the Green func-

tion of the problem on a ring of sizeL0 ~see, e.g.,@35,44#!, it
converges towards the equilibrium Gibbs measure on
ring in the largetw limit:

lim
tw→`

P̃L0
~x8,twux00!5

e2U~x8!/T

E
0,x8,L0

dx8e2U~x8!/T

. ~17!

This implies that

QL0
~z,t!→E

0

L0
dx8PL0

~x81z,tux80!
e2U~x8!/T

E dye2U~y!/T

.

~18!

This is particularly useful whent is fixed and much
smaller than the time necessary to travel a period@i.e.,
(lnt)2!L0 in Sinai’s model#. This formula can also be gen
eralized in the presence of a drift using the stationary dis
bution obtained in@44#. Note that these arguments extend
any finite-dimensional problem.

2. Nonperiodic case

In the nonperiodic case, whenL0→` before tw , it is
obvious that for a single configuration of disorder there is
limit to Q(z,tw1t,tw) astw→`. Indeed numerically Sinai’s
diffusion consists of sudden jumps to deeper and dee
wells. Thus even though in each successive well ther
presumably a quasiequilibrium regimeQ(z,tw1t,tw)
;Qwell(z,t) it will depend on the details of each new we
encountered. In some sense there is adistribution of such
r

e

i-

o

er
is

quasiequilibrium distributions~which is not unlike the image
from replica symmetry breaking!. In addition, there are times
tw where the packet jumps, but they presumably beco
more and more rare at largetw . Thus only the disorder av
erage~or translational average! can be expected to converg
to some limit Q(z,t), as these features will get smoothe
out. We will assume that this convergence holds~based on
our numerical evidence!.

One possible further assumption is that once avera
over disorder one has

Q~z,t!5Qeq~z,t![ lim
L0→`

QL0
~z,t!, ~19!

whereQL0
(z,t) is the distribution in the periodized medium

~using the same disorder distribution! given in Eq.~18!. We
have calledQeq(z,t) this distribution.

A possible reasonable starting assumption is that they
equal inQ̄5Qeq in Sinai’s model. We do have good numer
cal indication that this is indeed correct, as shown in Fig.
However, because differences, if they exist, could be sub
small, and hard to detect we emphasize that whether th
strictly correct should be checked further~there are indeed
cases where it is wrong—see the solvable model of Sec.!.
In any case, the above equation provides at least a basi
comparison.

3. Correspondence with the statics

Let us investigate the larget limit of Q(z,t). One ex-
pects, if the above assumption is correct, that fort→1`:

Q~z,t!; lim
L0→`

QL0
~z,t!→ lim

L0→`

QL0
~z!

5 lim
L0→`

E
0

L0
dx8

e2U~x81z!/Te2U~x8!/T

S E dye2U~y!/TD 2 . ~20!

Thus the two time calculation becomes a two replica c
relation function in a replica calculation.
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6302 57LAURENT LALOUX AND PIERRE Le DOUSSAL
a. Properties of the quasistatic distribution.For the Sinai
model one can argue that there is indeed a limit avera
quasistatic distributionQ̄(z). From the above formula~20!
and since there is typically one global minimum that dom
nates the periodL0 in Sinai’s landscape, it is clear that th
distribution will consist of two parts:~i! a part localized nea
z50 of finite extent, with a finite weight;~ii ! a part that is
strongly non-self-averaging with, for each environme
some localized peaks around somezi . Averaging over dis-
order yields a smoothQ(z) with analgebraic tailat largez:

Q~z!;
A

z3/2
. ~21!

This tail comes from configurations of the disorder as
Fig. 6. The lowest wellUmin in the sample of periodL0 is
represented and it happens that there is a secondary
with a bottom atUmin1En with En5O(T), at a finite dis-
tancez0 of the first one. Then roughly the measureQ(z) will
consist of two peaks localized around the two wells.

Since in the Sinai model the random potential can itself
seen as performing a random walk, the probability that s
an environment occurs can be estimated from the probab
of return to the origin of a random walk. This yields a pro
ability ;z0

23/2 and thus the above algebraic tail ofQ(z). A
more refined calculation, taking into account that the prin
pal well is an absolute minimum, can be performed and l
to estimates forA, but goes beyond the scope of this pap
Let us point out that the above equilibrium Gibbs meas
has been analyzed recently in Ref.@45# and they also ob-
tained analytically the above algebraic tail@i.e., formula
~21!#. This tail, however, can be explained from simple a
guments.

It would be interesting to check whether one can exte
ideas from mean field and whether in a replica calculation
Eq. ~20! the localized part near the origin would correspo
to the replica symmetric part of the solution while the ta
from the rare events to the part with broken replica symm
try.

FIG. 6. Two well~FDT-TTI! quasiequilibrium regime: rare con
figurations leading to sample fluctuations and algebraic deca
Q(z).
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So there is also an Edwards-Anderson order param
here but it is adistribution. Because of non-self-averagin
effects one needs the full distributionQ(z). It would be nice
to check more rigorously thatQ(z)5Qeq(z) ~and thus that
there is no extradynamicalorder parameter!.

Finally let us emphasize that the above arguments for
tail of the quasiequilibrium distribution are very similar t
static droplet model arguments@6#. Here, however, they are
made in a dynamical context.

The above arguments thus suggest that the moment
the relative displacements

lim
tw→`

^@x~ tw1t!2x~ tw!#n&;E znQ~z,t! ~22!

converge towards a finite limit whent→` only for n,1/2.
For n.1/2 they grow unboundedly witht. These moments
growing witht may nota priori be incompatible with being
in a quasiequilibrium state~though it calls for further inves-
tigations!. In mean field, this does not happen since even
unbounded diffusion problems@16# the quasiequilibrium re-
gime is such thatB(t,t8),bEA .

We now estimate these moments~22! using a simple two
well model taking into account the crossing of the barrierEb
between the two wells. Let us write

Q~z,t!5d~z! 1
2 ~11e2te2Eb!1d~z2z0! 1

2 ~12e2te2Eb!
~23!

and average overz0 and the barrier height, which we ca
take to scale asEb(z0);az0

1/2, a being a positive random
variable. This yields the moments

lim
tw→`

^@x~ tw1t!2x~ tw!#n&;
1

2E dzzn
A

z3/2
~12e2te2az1/2

!.

~24!

Introducing the scaled variabley5z/ ln2t and using that

the function (12e2e2a ln2t(y1/221/a2)
)'u(1/a22y) one finds,

for n.1/2,

lim
tw→`

^@x~ tw1t!2x~ tw!#n&;A~ lnt!2n21. ~25!

We have plotted these moments as determined num
cally in Fig. 7. The logarithmic growth of momentsn.1/2 is
clearly demonstrated~we have checked that, e.g.,n51/4
saturates at larget). Though they seem to follow Eq.~25!
qualitatively, a more quantitative agreement is probably d
ficult to reach numerically—since these effects entirely co
from rare events.

The above considerations also predict that the distribu
Q(z,t) should converge towardsQ(z) with a z/ ln2t scaling
behavior. This is consistent with our simulations as can
seen in Fig. 8 where we have shown theQeq(z,t) for various
t. It does indeed converge towards a limit curveQeq(z),
which was well fitted by its asymptotic behavior;z23/2.

One can also check from this simple model~23! that as a
consequence, the Edward Anderson ‘‘overlap’’ parame

of
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Q(z50,t) should also converge towards its equilibriu
value ast→` with 1/(lnt)a corrections. This indeed hap
pens as is shown in Fig. 9.

4. Equilibrium theorems

It is plausible that for largetw equilibrium theorems like
FDT hold for disorder averaged quantities. These prov
relations between correlation functions and linear respo
functions.

It is useful to generalize these theorems to the full pr
ability distributionQ̄(z,t,t8). This is done in the Appendixes
A and B to which, we refer for details. One defines

FIG. 7. Numerical determination of the moments^uzun(t)&Q as a
function of lnt. L5200 and 53103 configurations.

FIG. 8. Numerical determination ofQeq(z,t) compared to the
predicted asymptotic behavior;1/z(3/2) ~fit!. L5200 and 53103

configurations.
e
se

-

R~z,t,t8!5
dQh~z,t,t8!

dh~ t8!
, ~26!

where Qh(z,t,t8) is the probability when an additional in
finitesimal uniform field pulseh(t)5hd(t2t8) is applied at
time t8. A technical detail is that it can be applied at tim
t82e @which definesR1(z,t,t8)# or at time t81e @which
definesR(z,t,t8) and corresponds to the Ito prescription f
the response, i.e.,d^x(t8)&/dh(t8)50#. If quasiequilibrium
holds~meaning the currentJ at tw vanishes, see Appendix B!

the time translational invariant averaged functionsQ̄(z,t)
for large t85tw and fixedt and R̄(z,t) should verify the
exact differential relation

2]tQ~z,t!5T]zR~z,t!. ~27!

These relations can be generalized to discrete model
done in Appendix A. The responseR1(z,t) satisfies a
slightly different equation:

2]tQ~z,t!52T]z
2Q~z,t!1T]zR

1~z,t!. ~28!

We determined both distributionsR1(z,t) and R(z,t)
numerically ~as explained in Appendix B!. The response
R1(z,t) is plotted in Fig. 10. Note that fort5` the above
implies simply

R1~z,t!5]zQ~z,t! ~29!

and we checked thatR1(z,t) has the form;1/z(5/2) ex-
pected from the above relation and Eq.~21!.

The Ito responseR(z,t) satisfies Eq.~27! and is thus
analogous to aprobability current. ExaminingR(z,t) ob-
tained from our simulation as a function ofz confirms the
above arguments based on the two well model: there
~statistical! current flowing from the center regionz;0 to

FIG. 9. Plot ofQeq(z50,t)2Qeq(z50,t5`) againstt ~in lnt
scale!. L5200 and 53103 configurations.
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the z.0 ~and to thez,0). In each disorder configuratio
R(z50,t) does not have to vanish~since each local environ
ment is not symmetric! but its averageR(z50,t) must van-
ish by symmetry. We observe that in the simulation it is
the order 1023 smaller thanR(z51,t), which is consistent.

We have plottedR(z55,t) in Fig. 11. It shows clearly a
1/t decay. To be more accurate, we have plot
t lntR(z55,t) in Fig. 12. It indicates that

R~z,t!;
1

t~ lnt!b
, ~30!

FIG. 10. Plot ofR1(z,t) (y coordinate! vs z for varioust and
comparison with the expected larget limit 1/z(5/2) ~‘‘fit’’ !. L
5200 and 53103 configurations.

FIG. 11. Plot ofR(z55,t) (y coordinate! as a function oft.
Two simulations are indicated:L5100 and 53102 configurations
andL5200 and 103 configurations.
f

d

with b'1 ~for a fixed z). This could be consistent with a
decay ofQ(z,t);1/ln2t for fixed z and a scalingz; ln2t in
Eq. ~27!. However,Q andR are expected to consist of tw
parts witht dependent relative weights, one part scaling
z/ ln2t and a fixed part inz. Thus more work is needed t
determine these functions more precisely.

Very recently ~while this work was in completion! a
promising approach was developed by Cugliandolo, De
and Kurchan~CDK! @46# to obtain bounds that may perm
one to demonstrate that these quasiequilibrium regimes e
in models such as Sinai’s. Their approach is explained
Appendix C and some extensions and applications are gi
For Sinai’s model the bounds should be performed on dis
der averaged quantities~since single environment ones d
not converge!. Doing this one can obtain two bounds of in
terest for Sinai’s model:

U^x2~ t !&2^x~ t !x~ t8!&2TE
t8

t

R~ t,t8!U
<@^x2~ t !&#1/2E

t8

t

dsS UdH̄~s!

ds
D U1/2

~31!

and

u] t8B~ t,t8!12TR~ t,t8!u,B~ t,t8!1/2UdH̄~ t8!

dt8
U1/2

. ~32!

The first one was given in@46# ~though the problem of
disorder averaging is not discussed! while the second is new
B(t,t8) is defined in Eq.~10! and R(t,t8)5d^x(t)&/dh(t8)
5*dzzR(z,t,t8) ~with Ito’s definition of the response!.

The function

H̄~ t8!5E dx8P~x8t8u00!@TlnP~x8,t8u00!2U~x8!#

FIG. 12. Plot oft ln(t)R(z55,t) (y coordinate! as a function of
t. L5200 and 103 configurations.
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57 6305AGING AND DIFFUSION IN LOW DIMENSIONAL . . .
is the averaged free energy, which satisfies anH theorem~it
is always decreasing!. The nice observation of@46# is that
since in Sinai’s modelH̄(t8);2 lnt8 the above bound~31!
implies that the right-hand side~rhs! bound for the integrated
FDT violation is (lnt)2(t1/22t81/2). Clearly fort5t2t8 fixed
it implies that~integrated! FDT holds, but it does even see
to imply that it holds further even fort;t81/2.

Note that the second bound~32! immediately implies that
if there is a limit distribution limtw→`Q(z,tw1t,tw) then it

will depend only ont5t2t8 ~TTI! and the bound implies
that FDT is verified@sincedH(t8)/dt8 goes to zero#. ~Note
that this is also the case for Brownian motion!.

While these results are as inescapable as rigorous bou
an explanation for this could be looked for in our previo
arguments about periodic media. Indeed if our assump
~19! is correct, then one can choose ln2t!L0!ln2tw and still
have equilibrium and FDT~since the probability of having
another accessible absolute minimum in the boxL0 at dis-
tances@1 is vanishingly small!. Thus it is likely that in fact
FDT will hold beyond what is shown by the bound, probab
until t;tw

c with c,1 ~beyond that one enters the diffusio
and aging regime, see next section!.

Note also for completeness the two single time bound

u] t8^x~ t8!&u<UdH̄~ t8!

dt8
U1/2

, ~33!

u] t8^x~ t8!2&u<u^x~ t8!2&u1/2UdH̄~ t8!

dt8
U1/2

. ~34!

Thus we have found that an~equilibrium! TTI diffusion
regime for the processz(t) persists within the quasiequilib
rium regime.

One can also apply these bounds to the case with an
plied force f ;m, anticipating a little on the next Sec. II
where the directed model will be discussed. Let us assu
that H̄(t8);2^x(t)&;2(t8)m. Then Eq.~31! leads to

U^x2~ t !&2^x~ t !x~ t8!&2TE
t8

t

R~ t,t8!U
<tm@ t ~m11!/22~ t8!~m11!/2#. ~35!

Expanding fort!t8, one finds that the left-hand side mu
be smaller thant/t8(123m)/2. Thus it shows the existence o
an FDT regime form.0 in Sinai’s model. The rhs goe
strictly to zero as long asm,1/3 but if one actually divides
the rhs by the expected scale of the lhs (;t2m) one gets
t/t8(11m)/2. Thus a FDT regime~with X51) seems to be
possible form,1.

This may seem surprising at first, since form.0 the sys-
tem is driven. However, it makes sense physically. Reme
ber that for m,1 the particles will spend most~all for
tw→`) of their time in a well of release time;tw ~see Sec.
III !. There they have time to equilibrate. Thus in some se
the fact that there is aging~and broad distributions of releas
time! is intimately related to the fact that there can be eq
librium within a well.
ds,

n

p-

e

-

e
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The above bounds also put constraints on the poss
aging forms for a large class of models. This will be d
cussed in Sec. IV.

E. Aging and diffusion regime

We will now present our results fo
P(n,tun8,t8)P(n8,t8un0 ,t050) in the regime wheret andt8
are large and well separated. As stressed above the dat
complicated to analyze. We have found numerical evide
for two regimes.

~i! The diffusion regime.The first one is thediffusion
regimewherez;(lnt)2 and lnt8;lnt:

Q~z,t,t8!;
1

~ lnt !2
FF z

~ lnt !2
,
lnt8

lnt G . ~36!

In that regime the three relative displacementsx(t)
2x(t8), x(t)2x(0), andx(t8)2x(0) are of the same or
der of magnitude.

~ii ! The aging regime.Another regime was found by look
ing at the decay ofQ(z;0,t,t8) for z fixed and small~near
z50) andt and t8 large. Byz fixed and small we mean in
our numerical simulationn5n8 but it means more generall
that n is in a finite neighborhood ofn8. For instance, we
have found that the decay ofQ(z50,t,t8) could be as slow
as desired by taking botht and t8 to infinity. We have tried
various dependences of the form

Q~z50,t,tw!; f Fh~ tw!

h~ t ! G . ~37!

The best fit was obtained for

h~ t !; lnt. ~38!

This is illustrated in Fig. 13 where we have usedtw;ta

FIG. 13. Plot ofQ(z50,t,ta) for various values ofa, which
indicates that the aging scaling function ish(t); lnt. The curvature
of the curves for smalla at times not very large is due to th
smallness ofta. L5200 and 53103 configurations.
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with 0,a,1 and variedt with fixed a, which is consistent
with h(t)5 lnt, since a5 lntw /lnt. For a51 one recovers
Qeq(z50) as expected. Note that it is more difficult nume
cally to get correctly the smalla behavior~hence the curva-
ture of the curves for smalla on Fig. 13, which is due to the
smallness of the availabletw;ta). We have also triedtw
;t/2 in order to test a possiblet/tw dependence of this quan
tity ~upper curve!. This curve is in fact indistinguishable a
large t from Qeq(z50). This strongly indicates that agin
with a form t/tw is unlikely.

We want to emphasize that we could not rule out ot
forms more complicated thanh(t)5 lnt. However, the form
t/tw appears very unlikely for the measured quantity~e.g.,
we have not checked the behaviors of the moments!.

We have also computedQ(z,t,ta) for severalz fixed and
large t. We find that the aging behavior is also valid forz
Þ0. In fact we find strong evidence for the behavior:

Q~z,t,t8!5Q0~z! f F lnt8

lnt G ~39!

as is shown in Fig. 14 for 0<z<10, where we have bee
able to collapse all the various curvesQ(z,t,t8) on the same
curve Q0(z). Thus this curve should also be equal
Q0(z)5Qeq(z,t5`)/Qeq(z50,t5`).

This behavior seems to be consistent with a picture
aging in Sinai’s model~at least for smallz) where an equili-
brated packet jumps as a whole out of its large well wh
t8;ta. This will be discussed further in Sec. IV. Though th
collapse in Fig. 14 is perfect at smallz ~better than 1024 in
relative precision! it becomes poorer at largerz. This is prob-
ably due to the fact that for the available times one overl
somehow with the diffusion regime. It is unlikely, but n
ruled out, that this could be the sign of yet another regi
~more work would be necessary!.

FIG. 14. Plot ofQ(z,t,ta)/Q(z50,t,ta) as a function ofz for
several values ofa and for two timest51010 and t51013. L
5250 and 103 configurations.
r

f

n
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e

The fact that the temporal scaling is found to be the sa
h(t);L(t); lnt in both this aging regime and the diffusio
regime indicates that these two regimes may in fact be
same in this model. If that is indeed correct it does imply th
the above two time diffusion scaling function~36! must have
a singularity near the origin, e.g., a delta function singular
ity. This remains to be investigated further.

Note that in mean field, in short range models, one c
also see that the diffusion scale and the aging scales act
coincide@16#. Here it seems that the same happens, tho
for a different quantityQ(z;0,t,t8).

III. DIRECTED MODEL

In this section we study aging and diffusion in a simp
model of directed diffusion with disorder where two tim
correlation functions as well as response functions can
computed simply. This model will appear as a particular c
of a more general ‘‘solvable model,’’ which we will intro
duce in Sec. V.

In this model the particle can only jump to the right of th
occupied site and quenched disorder is introduced by ch
ing at each siten an average waiting timetn according to a
given distributionP(t). The distribution of waiting times is
further chosen with an algebraic tail at large timesP(t)
;C/t11m. This directed model was introduced and studi
~for single time quantities! in @26#. It was also shown@26,23#
that it is a large scaleeffective descriptionof the Sinai model
in presence of a bias. The idea is that in the presence o
applied forcef the potential landscape@x,U(x)# is a biased
random walk. There are thus some places where the wa
goes back against the bias. This leads to rare barriers ag
the drift of sizeEb with probability exp(2fEb). Since the
waiting time in these traps behaves as exp(2Eb /T) this is
enough to generate dynamically an algebraic distribution
waiting times@23#. Whether this model is also a good d
scription of the biased Sinai model for two times quantit
remain to be investigated in detail.

The model is defined by the Fokker-Planck equation

dPn~ t !

dt
5HnmPm~ t ![Wn21Pn21~ t !2WnPn~ t !. ~40!

The rates at each site correspond to a mean waiting timtn
51/Wn .

The Green functionP(n,n0ut2t0) is defined as the solu
tion of Eq. ~40! with initial condition P(n,n0u0)5dnn0

. Its

Laplace transform~LT! P(n,n0us)5*0
1`P(n,n0ut)e2st can

be computed easily from Eq.~40!. It reads

P~n,n0us!5
1

s1Wn
)

k5n0

n21
Wk

s1Wk
. ~41!

Averaged single time quantities are easily computed fr

P~0,0us!5
1

s1W
[F~s!, ~42!

P~n,0us!5F~s!@12sF~s!#n21. ~43!
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The long time limit is then obtained from the smalls
behavior of the functionF(s):

F~s!;H Cp/~sinmp!sm21, m,1

1/V1Cp/~sinmp!sm21, 1,m,2

1/V2Ds1Cp/~sinmp!sm21, m.2.

~45!

~44!

~46!

This yields the several phases of the model: the subdi
sive phase 0,m,1 wherex;tm ~and zero velocity!, the
anomalous dispersion phase 1,m,2 where there is a veloc
ity V.0 but dispersion is anomalousD5`, and the diffu-
sive phasem.2. We will be mostly interested here in th
case 0,m,1. There the above result immediately yields
Lévy diffusion front @26#.

We are now interested in the averaged probability that
particle advances bym betweent8 and t5t81t:

Q~m,t,t8!5^d„x~ t !2x~ t8!2m…&

5 (
n>0

P~n1m,n,t!P~n,0,t8!. ~47!

This quantity is computed in Appendix F. The result
Laplace variables is the following:

Q~m50,s1 ,s2!5
F~s1!2F~s2!

~s22s1!s2F~s2!
,

p~m>1,s1 ,s2!5
s2F~s2!2s1F~s1!

~s22s1!s2F~s2!
F~s1!

~48!

3@12s1F~s1!#m21,

wheres1 is associated tot ands2 to t8. In fact one notices
that

Q~m>1,s1 ,s2!5S 1

s1s2
2p~m50,s1 ,s2! DF~s1!

3@12s1F~s1!#m21 ~49!

and thus the disorder averages factorize:

Q~m>1,t,t8!5@12Q~0,t,t8!#* P~m21,0ut!, ~50!

where the * denotes convolution over the variablet. This
could be expected from the Markovian and directed natur
the walk. The clock is set back to 0 when they exit the tr
Thus for two times quantities all one needs to know is
two time averaged probability of not moving betweentw and
tw1t plus the averaged probability of diffusing bym during
t.

Let us first examine the probability of no motion. Explic
Laplace inversion is simple on the asymptotic form form
,1 and it gives

Q~m50,t t8!5
sin~pm!

p E
0

t8/t
dx~12x!2mxm215F~t/t8!,

m,1, ~51!

where
-

e

of
.

e

F~z!5
sin~pm!

p E
z

`

dy
1

ym~11y!
. ~52!

One has

F~z!;
sin~pm!

mp
z2m, z→` ~53!

and 12F(z);z12m at smallz.
It has an aging form as a function oft/tw . This is the

manifestation of the Feigelman-Vinokur trap model mech
nism of aging. This expression is similar to the one obtain
in @28# in an infinite range model. In the present case, ho
ever, we are also interested in the diffusion regime, which
now analyze.

We see on the above expression that ift is finite andtw
→` the probability of being trapped in a well is 1. There
no motion on finite time scales. We note that this direc
model is not rich enough to contain information about t
dynamics inside traps. The quasiequilibrium regime is th
degenerateQ(z,t)5dz,0d(t).

The above result also shows that at timetw1t the frac-
tion of particles released by their well is of order (t/tw)12m

and that the particles that are released exhibit fast motion~as
if the clock is then set back to 0 when they exit the trap!. In
this model the later motion is not slower. Thus they w
move typically bydx;tm.

Thus can easily estimate the moments:

^@x~ tw1t!2x~ tw!#n&;~t/tw!12mtnm. ~54!

Note that this gives, for the first moment,

^@x~ tw1t!2x~ tw!#&;t/tw
12m;~ tw1t!m2tw

m ~55!

in the regimet!tw consistent with the known result for th
first moment.

We note that there is in some sense an ‘‘aging regim
for each moment. Indeed one can impose t
^@x(t)2x(t8)#n& is a fixed number while taking bothtw
→` andt→` provided:

t;tw
~12m!/@11~n21!m# . ~56!

This depends on the moment itself. This illustrates
strong non-self-averaging properties in one dimension.

In addition to a self-averaging aging regime, which
confined toz50, there is in this model a diffusion regime fo
z;tm and t;t8. It can be written as

Q~z,t,t8!5
1

tm
FF z

tm
,
t8

t G . ~57!

Using the above exact relation

Q~z,t,t8!5Q~z50,t,t8!P~z,t2t8,0!, ~58!

whereP(x,t,0) is the single time diffusion front that takes
scaling form P(x,t,0);t2mP̂(xt2m) where P̂ was deter-
mined in @26,23#.

One finds
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F@y,l#5~12l!2mFF12l

l G P̂@y~12l!2m#. ~59!

The response function can also be computed. Using the
mula ~A10! of Appendix A one sees that the matrixB5H
and thus:

R~ t,t8!5
1

2

d^x~ t !&
dt

~60!

and is thus independent oft8. In fact any response functio
can be obtained that way. For any observable depending
on time t:

d^O~ t !&h

dht8

5
1

2

d^O~ t !&
dt

, ~61!

which comes from the directed nature of the model.

IV. GENERAL DISCUSSION AND BARRIER MODELS

In this section we first discuss aging and diffusion pro
erties in low dimensional phase space in terms of scaling
barriers. To illustrate how these ideas work in practice,
study some cases that can be solved analytically, such a
directed model of the last section with more general w
distributions. These ideas can in principle be applied to st
aging in a wider class of models.

A. Aging, diffusion, and scaling of barriers

One way to formulate the question of aging is to ask w
is the typical size of thenext large barriertypically encoun-
tered by the particleafter time tw ~i.e., at timest.tw). The
idea is that small barriers have already thermalized. One
usually consider that all barriers of sizeTlntw2TC have al-
ready thermalized, whereC is a constant that can be chos
large but can be kept fixed astw→` ~this will be true in
‘‘reasonable’’ landscapes with fast enough growing barrie
e.g., such that diffusion times are smaller than equilibri
times!. Thus one must look at the next barrier encounte
after tw , which has a size bigger thanEb.Tlntw2TC. For a
relaxation behavior of the typet/tw to occur one must have
that a typical particle in a typical environment~i.e., that there
is a finite fraction of particles and environments! must over-
come a barrier within the rangeTlntw2TC,Eb,Tlntw1TC
after timetw . This is illustrated in Fig. 15. If typically there
is no such barrier, e.g., the next encountered barrier is alw
larger, then the particle is typically thermalized fort/tw5c
and thus one expects

lim
tw→`

Q~z,ctw ,tw!5Qeq~z,t5`!, ~62!

which seems to hold for the Sinai model from our simulati
results~see Sec. II!. This situation is illustrated in Fig. 16.

On the other hand, if the particles typically encoun
such barriers, then one can have a scaling ast/tw . For that
one needs an appropriate degeneracy of the barriers. Th
the case for the directed model, which has an exponen
distribution of barrierse2aE. At tw there is a finite probabil-
r-

ly

-
of
e
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t
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ys

r

is
ial

ity ;e2a(Eb2Tlntw) that the next barrier isEb . A more precise
analysis is presented in the next section.

To have aging int/tw there is of course no need to have
scenarioá la Feigelman-Vinokur and also no need for ra
domness. In the next section we construct a simple mo
that exhibits a variety of aging and diffusion regimes,but
that satisfies the above mentioned property.

The property~62! does not mean that there is no agin
but rather that it is degenerate int/tw . In fact Eq.~62! sug-
gests that there must be a scaling that gives some aging.
can always define a functiont5gc(tw) such that

Q@z50,gc~ tw!,tw#5c, 0,c,Qeq~z50,t5`!.
~63!

The question is how does the functiongc(tw) behave for
large tw . A natural possibility is thatgc(tw);tw

m(c) and in-
deed we now argue that this is the case in Sinai’s mo
Note that more generally one can define for eachz a function
g(c,z,tw) such thatQ@z50,g(c,z,tw),tw#5c. If the largetw
behavior of this function is the same for allz then one has an
aging regime with a nontrivialz dependence as in the mode
of Sec. V.

In the symmetric Sinai model the question of the ne
large barrier to be encountered is difficult to answer anal
cally but the following simple arguments can be made. Ty

FIG. 15. Barrier condition that leads to aging ast/tw .

FIG. 16. Barrier in Sinai’s model.
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cally at timetw the particle is within a valley~see Fig. 16!.
Let us callUmin the lowest energy point of the valley. Th
walls of the valley are at leastUmin1Tlntw2TC. The particle
sits at a point that is withinU,Umin1TC in energy~since
the valley is typically thermalized, sitting any higher has
vanishingly small probability!.

Geometrical construction of possible valleys such as th
in the energy random-walk landscape of Sinai’s mo
shows that typically the next barrier, i.e., the size of t
smallest wall, is of the order of (11a)Tlntw wherea is a
fluctuating positive random variable. This can be seen fr
the fractal nature of the landscape. This suggests that a
pendence of type lnt/lntw , i.e.,

lim
t,tw→`

Q~0,t,tw!5FF lnt

lntw
G , ~64!

which is indeed observed. Note that one also expects, f
the argument after Eq.~63!, that an aging scaling form
should exist for any finitez:

lim
t,tw→`

Q~z,t,tw!5FFz,
lnt

lntw
G . ~65!

Thus to predict aging properties one needs to know
statistical properties of the sequence of barriers effectiv
encountered by a particle. It would be appealing to relat
to the geometry of the environment. A first step would be
define in a one-dimensional landscape thesequence of the
next largest barrier encountered starting from an initia
point. Let us call themGn5Eb(n). Two examples of land-
scapes are shown in Fig. 17 and Fig. 18. Figure 17 re
sents, e.g., the directed model of the last section, with
arbitrary distributionP(E) of barriers@of height Ei corre-
sponding to waiting timest i5exp(2Ei /T)#, which general-
izes the algebraic waiting times distribution. The importa
question is how does the seriesGn5Eb(n) grow typically
with n. This will already give a rough idea of the type o
aging one can expect. In particular it may determine the

FIG. 17. Sequence of next largest barrier in simple models~see
text!.

FIG. 18. Sequence of next largest barrier in Sinai’s model st
ing form point 0.
se
l

e-

m

e
ly
it
o

e-
n

t

g-

ing scaling functionh(t). In the Sinai model the series fol
lows a ~random! geometric progressionEb(n);exp(cn) as
illustrated in Fig. 18, which leads to the observed behav
~64!. In order to have at/tw behavior one needsEb(n) to
grow typically ascn, which is what happens in the directe
model. Note that the progression of barriersEb(n) with n
depends only on the topology of the lansdcape and, for
stance, not of distances alongx @different landscapes ca
have the sameEb(n)#.

Of course to predict more detailed properties one m
need to know more: i.e., the sequence of barrierseffectively
encountered by the particle. For this one needs also to k
about the well depths. Let us consider, e.g., a nondirec
model but with a landscape as in Fig. 17 where all the we
have the same depth. There the packet will thermalize i
large region~bounded by the next largest barriers! of size
L(t). This will result in a geometrical prefactor, e.g.,Q(z
50,t,t8);L(t)21F@h(t)/h(t8)#. If the well depths grow
sufficiently fast then the packet will be concentrated at
bottom and then one may expect a reduced, or even fi
prefactorL(t)5cst ~as in Sinai’s model!.

Thus if one knows the statistical properties of these-
quence of next largest barrierone knows a lot about the
aging form. In fact if these barriers grow sufficiently fa
with n ~faster thann) we expect that this information is
enough to determine these aging formsentirely~provided the
wells grow also fast enough—see remarks of previous s
tion!. This suggests, e.g., in Sinai’s model, a program
study aging exactly~though it is technically difficult!. Let us
illustrate these considerations on models where this const
tion can be done easily.

Classification of aging forms and constraints from t
CDK bounds.Before we do so let us present some gene
considerations about the aging functionsh(t). Remember
that there is some gauge freedom in choosing them s
aging quantities are determined by a fixed ratioh(t)/h(tw)
5c. Thus, e.g., the choiceh(t);t is as good ash(t)5tn

~with the proper change inc).
An obvious classification is to distinguish between thr

classes of functionsh(t).
~i! h(t) grows slower thant ~or any power oft). This

corresponds to fast growing barriers. The conditi
h(t)/h(tw)5c can also be expressed ast5t2tw;t
;H(c,tw). Examples are

h~ t !;5
lnt, t;t;tw

c ~c.1!

e~ lnt !a
, t;t;twexpS lnc

a
~ lntw!12aD , 0,a,1

e~ lnt !/~ lnlnt !, t;t;tw~ lntw! lnc;

~66!

~67!

~68!

~ii ! Simplest aging behaviorh(t)5t; ~iii ! h(t) grows faster
than t ~subaging!. Then one must havet5t2tw!tw , such
as in the following examples:

h~ t !;5 e~ lnt !a
, t5

lnc

a

tw

~ lntw!a21
, a.1 ~69!

eta, t;
lnc

a
tw
12a, 0,a,1 ~70!t-
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The CDK bounds discussed in Sec. II also put gene
constraints on possible aging forms assuming they have
in mean field, a nontrivial 0,XÞ1,` ~see Appendix B for
definitions!. Assume indeed that as in mean field all corre
tion functions andX are functions ofh(t8)/h(t). Then bound
~32! implies that

dlnh~ t8!

dt8
!UdH̄~ t8!

dt8
U1/2

. ~71!

Thus if H̄(t8);t82a one has that

h~ t !!exp~ t ~12a!/2!, ~72!
al
as

-

which excludes a large class of subaging behaviors~Sinai
corresponds toa50).

B. Sequence of largest barriers

It is simple in some cases to determine exactly the dis
bution of the sequence of next largest barriers.

Let us look again at the directed model defined by a se
successive barriersEi , identically distributed with a distri-
bution P(E). We denoteH(E)5*E

1`P(E8)dE85Prob(E8
.E).

Let us estimate the probability density that the seque
of successive next largest barriers~see Fig. 17! be
E0 ,G1 ,G2 , . . . ,Gn . It is by definition
l

ing as a

lem of
Q~E0 ,G1 , . . . ,Gn!5 (
k150,̀

. . . (
kn50,̀

Prob~E1,E0 , . . . ,Ek1
,E0 ,Ek1115G2.E0 ,Ek112,G1 , . . . ,Ek211, ~73!

5G2 . . . Ekn115Gn.Gn21). ~74!

This yields immediately

Q~E0 , . . . ,Gn!5p~E0!
p~G1!u~G12E0!

H~E0!

p~G2!u~G22G1!

H~G1!
•••

p~Gn!u~Gn2Gn21!

H~Gn21!
. ~75!

It is easy to see that the exponential distributionp(E)5exp(2E)u(E) has a special property. Indeed, in that case,

Q~E0 , . . . ,Gn!5u~E0!u~G12E0!u~G22G1!•••u~Gn2Gn21!e2Gn ~76!

but this can be written as the product

Q~E0 , . . . ,Gn!5 )
i 50,1, . . . ,n

p~Gi2Gi 21!, ~77!

with G05E0 and G2150. This shows that the difference between successive largest barriers hasthe same exponentia
distribution p(E) and areindependently distributed. Thus,

Gn5 (
i 50,n

wi . ~78!

The central limit theorem can then be used and leads to a Gaussian distribution for the variable (Gn2n)/An. This
remarkable property of the exponential distribution allows one to understand the Feigelman-Vinokur scenario for ag
linear ~random! growth of the next largest barrierEb(n)5Gn;cn.

This remarkable property of the exponential distribution also allows one to obtain the general solution of the prob
finding the probability of a sequence of largest barrier. DefiningF(E)52 ln*E

1`dE8P(E8) one has

P~E!dE5de2F~E!u~E!5F8~E!e2F~E!u~E!dE ~79!

and thus Eq.~75! can be put in the form

Q~G0 , . . . ,Gn!dG0•••dGn ~80!

5dF~G0!•••dF~Gn!u~G0!u~G12G0!u~G22G1!•••u~Gn2Gn21!e2@~Gn2Gn21!1~Gn212Gn22!1•••1~G12G0!1G0#

~81!
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and the sequence of variablesF(G0), . . . ,F(Gn) can be
constructed as a ‘‘random walk’’:

F~Gn!5(
i 50

n

wi , ~82!

where thewi are a set of independent variables, identica
distributed with an exponential distributionP(w)dw
5e2wu(w)dw. There are several consequences. First
distribution of eachF(Gn) is thus a Poisson process:

Q~Gn!dF~Gn!5
F~Gn!n

n!
e2F~Gn! ~83!

and one has the central limit theorem for largen:

F~Gn!2n

An
→v, ~84!

wherev is a centered Gaussian random variable of unit v
ance. One can apply these results to various cases:~i! alge-
braically growing barriers:P(E)dE5aEa21e2Ea

u(E)dE,
which corresponds toF(E)5Ea. Then one has

Gn;n1/a. ~85!

Note that the randomness~disorder! is only a subleading
correction. ~ii ! Exponentially growing barriers:P(E)dE
5(11E)2(a11)u(E)dE, which corresponds toF(E)
5alnE. Then one has

Gn;en/a. ~86!

The variableGn has a log-normal distribution.

C. Consequences: aging properties

Having determined exactly the sequence of next larg
barriers one can construct a toy model that will mimic t
exact diffusion process. We claim that if barriers grow fa
enough~faster thanEn;n) it will give the exact aging be-
havior. It can be applied to a variety of landscape, but let
apply it here only to the previously considered direct
model.

The toy model amounts to approximately the quan
Q(z,t,tw) at z50 ~i.e., the probability to remain still be
tweentw and tw1t) as

Q~t,tw![Q~0,tw1t,tw!

5 (
k50

1`

u~Gk21,Tlntw,Gk!exp~2te2Gk /T!.

~87!

This means that attw all barriers smaller thanTlntw have
been overcome and that the only relaxation process is to
over the next highest barrier. This is illustrated in Fig. 1
which is adequate for the directed model. It thus suppo
that the probability to be in another well is zero, which
e

i-

st

t

s

go
,
es

correct for the directed model if barriers grow fast enou
~which means distribution of waiting times wider than pow
laws!.

This can be rewritten as

Q~t,tw!5 (
k50

1`

@u~Fw2Fk21!2u~Fw2Fk!#

3exp~2te2~1/T!F21~Fk!!, ~88!

where Fk5F(Gk) and Fw5F(Tlntw). Because of the
above statistical properties of the sequence this yields u
averaging:

Q~t,tw!5E df(
k50

1`

Qk~f!E
0

1`

dwe2w@u~Fw2f1w!

2u~Fw2f!#exp~2te2~1/T!F21~f!! ~89!

and we can use Eq.~83!, namely, that(k50
1` Qk(f)51. In the

large time limit one can shift the integrand globally byf
→f1Fw without edge effects~though one must be carefu
not to shift terms independently because of divergent in
grals!. Thus,

Q~t,tw!5E dfE
0

1`

dwe2w@u~2f1w!2u~2f!#

3exp~2te2~1/T!F21~f1Fw!!. ~90!

This can be rewritten, after integration by parts, as

Q~t,tw!5E
0

1`

dve2vexp~2te2~1/T!F21~v1Fw!!. ~91!

This is our general result for this toy model.
Let us estimate Eq.~91! first for models with fast enough

growing barriers, i.e., faster thanF(E);E. We introduce
the aging scaling functionh(t)5eF(Tlnt) and thus F(x)
5 lnh(ex/T) andF21(y)5Tlnh21(ey). One can rewrite

Q~t,tw!5E
0

1`

dwe2wexp~2e2~1/T!S~w,t,tw!!, ~92!

with S(w,t,tw)5F21@w1F(Tlntw)#2Tlnt. It turns out that
if barriers grow fast enough the function exp(2e2S) acts ex-
actly as a theta functionu(S) and the result is simply

Q~t5t2tw ,tw!5
h~ tw!

h~t!
~t@tw!. ~93!

This can be shown by a careful examination of the asym
totics. The point is that if one takest andtw to 1` such that
the ratioh(tw)/h(t) is fixed then the result is Eq.~93!. Since
barriers grow fast enough one has limh(tw)/h(t)
5 limh(tw)/h(t). A more correct version of the above stat
ment is that

lim
tw→`,t→`,h~ tw!/h~ t !5y

Q~t5t2tw ,tw!5y. ~94!

It is interesting to note that one hasexactly
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ew5
h~ t !

h~ tw!
~95!

and thus the above result follows from the exponential d
tribution of w. Note that this is like taking theT50 limit and
thus if barriers grow fast enough we are dealing with aT
50 fixed point. Note that our result can also be rewritt
quite generally as

Q~t5t2tw ,tw!5

E
t

1`

P~t!dt

E
tw

1`

P~t!dt

. ~96!

as a function of the waiting time distributiont5eE/T. In
particular we have determined that the aging function is
actly

h~ t !5
1

* t
1`P~t!dt

. ~97!

One can also define the probability that at timetw the
particle is next to a barrier~i.e., in a site! of waiting time t̃,
i.e.,

Q~t,tw!5E
0

1`

d t̃Ptw
~ t̃!e2t/ t̃, ~98!

Then the above formulas yield that this ‘‘aged’’ waiting tim
distribution is

Ptw
~ t̃!d t̃5

h~ tw!

h~ t̃!

dh~ t̃!

h~ t̃!
u„h~ t̃!2h~ tw!…. ~99!

This also takes the simple form

Ptw
~ t̃!d t̃5

P~ t̃!d t̃

E
tw

1`

P~ t̃8!d t̃8

u~ t̃2tw!, ~100!

which we have shown holds exactly. We can now ap
these results to several cases.~i! Algebraically growing bar-
riers: F(E)5Ea with a,1. Then one has h(t)
5exp@(Tlnt)a#.

Q~t5t2tw ,tw!5exp$2@~Tlnt !a2~Tlntw!a#%.
~101!

~ii ! Exponentially growing barriers: P(E)dE5(1
1E)2(a11)u(E)dE, which corresponds toF(E)5alnE and
h(t)5(Tlnt)a. Then one has

Q~t5t2tw ,tw!5S lntw

lnt D a

. ~102!

Let us now apply the above model in the case of linea
growing barriers@F(E)5E#. There we know that the as
sumption that the whole packet is concentrated next to
next highest barrier is certainly not exact. Indeed since th
are many barriers withinTlntw2C,E,Tlntw1C the packet
-

-

y

y

e
re

will be spread out~barrier degeneracy!. It is instructive
though to see how well this toy model does in that case.

Settingy5t/tw one gets

Q~y!5E
0

1`

dwe2wE
0

w

dfexp~2ye2f/T!. ~103!

After integration by parts and change of variables,

Q~y!5E
0

1`

dwe2wexp~2ye2w/T!5Ty2TE
0

ydl

l
lTe2l.

~104!

For largey it behaves as

Q~y!;TG@T#y2T, ~105!

which is to be compared with Eq.~53! (T is exactlym, T
5m, from the relation between waiting times and barr
heights!. The toy model gives exactly the exponent, but n
the prefactor. We note, however, that at smallT the prefactor
becomes exact, which is in agreement with the fact that
faster growing barriers the toy model becomes exact.
small y the toy model, however, does not yield the nonan
lyticity at t!tw , which thus entirely originates from th
initial ~fractal! dispersion of the packet attw over several
wells. For smallm5T the packet is in fact dispersed ove
very few wells, as can be seen easily from the well kno
property @26# of sums of Levy variables( it i to be domi-
nated by a few terms. This is also very reminiscent of repl
symmetry breaking in mean field models~which have states
with algebraically distributed Boltzmann weights!.

This confirms our physical picture: only maxima sta
playing a role when barriersGn grow faster thann. The case
Gn;n is the marginal case when finer information is impo
tant.

Note that the exact result~51! can be put in the form

Q~t,tw!5E
0

1`

duf~u!e2ut/tw, ~106!

f~u!5
sin~pT!

p

e2u

u E
0

u dt

tG@T#
tTet ~107!

to be compared with the toy model, which has af(u)
5TuT21u(0,u,1). Thus one can see that for largew the
e2w is correct, however, the barriers that are not large, or
one atw,0 ~smaller thantw), start playing an importan
role.

The role of smaller barriers can be illustrated as follow
The correct distribution of the waiting timet̃ of the site
where the particle is attw is computed in the Appendixes. I
reads

Ptw
~ t̃!d t̃5

sin~pm!

p

d t̃

tw
S tw

t̃
D 11mE

0

1

e2~ tw / t̃!~12u!
um21

G@m#
.

~108!

This should be compared with the barrier model, whi
gives

Ptw
~ t̃!dt5m

d t̃

tw
S tw

t̃
D 11m

u~ t̃2tw! ~109!
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from the above formula~100! and the identificationt̃
5ew/T. As above, the toy model gives the correct power-l
dependence forlarge waiting times~the prefactor itself be-
coming exact whenm→0). There is, however, an accumu
lation of smaller barriers effectively seen by the partic
which is not captured.

Let us conclude this section by noting that this type
distribution of next largest barriers can be used to analyz
large variety of models. For instance, the analysis of
symmetric waiting time model ind51 or of directed model
with several branches will be quite similar but goes beyo
the scope of this paper.

V. A SOLVABLE MODEL WITH AGING AND DIFFUSION

We will now present a solvable model that exhibits sim
taneously a nontrivial aging regime and a nontrivial diffusi
regime. The third regime~the quasiequilibrium one! is de-
generate~it is reduced to a point!. More properly this is
really a class of solvable models, and we will only study
few.

In view of the discussion about barriers of the preced
section the best way to construct a one-dimensional diffus
model with a nontrivial aging regime@i.e., such that there is
a finite probability thatz5x(t)2x(tw) remains finite when
both t and tw are large# is to make sure that the next large
barrier seen after timetw is equal to the previous one plus
constant~for aging ast/tw). A natural landscape is thus t
look at a succession of barriersEb

n;n. However, one wants
the valleys also to become deeper and deeper, otherwis
thermal packet will be too extended. Thus a natural choic
also to assume the valleys to scale asEmin

n ;2n, a landscape
represented in Fig. 19. It turns out that thecontinuousver-
sion of this model, as well as some generalizations, can
solved exactly in a very simple way.

A. The general model and its solution

Let us consider the following one-dimensional diffusio
equation:

FIG. 19. Aging model studied in the text in the continuum lim
,
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] tP~x,t !5]x$D~x!@]xP~x,t !2F~x!P~x,t !#%. ~110!

This model corresponds to diffusion in a landscape w
both barriersEb(x) and a potentialU(x) ~valleys! such that

D~x!5e2Eb~x!, U8~x!52F~x!. ~111!

Here and in what follows we will set the temperatureT51
for convenience but it can be easily put back in. The pot
tial is defined by the fact that the equilibrium zero curre
measure isPeq(x)5exp@2U(x)#. The general model~110!
cannot be solved but there is a particular case that can
solved easily, which is

U~x!52Eb~x!/2. ~112!

The model is defined by giving a functionF(x) such that

eU~x!5e2Eb~x!/25F~x!. ~113!

Then the diffusion equation becomes

] tP~x,t !5]x$F~x!]x@F~x!P~x,t !#% ~114!

and is easily solved since one can define a new variabu
and a new probabilityG(u,t) such that

du

dx
5

1

F~x!
, P~x,t !dx5G„u~x!,t…du~x!. ~115!

In the variableu the system is a free diffusion problem

] tG~u,t !5]u
2G~u,t !. ~116!

Clearly for the choiceF(x)5ex and thusEb(x)52x this
model is some continuum limit of the one represented in F
19. It will have the same expected large time properti
Note that the quasiequilibrium regime will be lost in th
limit ~i.e., reduced to a delta function, see below! as the size
of each well will become infinitesimal. It would be nice to b
able to solve directly the model of Fig. 19 to obtain also t
small time behavior. In any case the results presented
for large times will be the same~they are not an artifact o
the continuous limit!.

One must define carefully the boundary conditions. Th
are basically two choices that we will study. They are
follows:

Free boundary conditions.One can study a barrier land
scapeEb(x) defined from2`,x,`. This could either be a
random landscapeU(x) or a deterministic one with growing
barriers ind51, which we then should choose symmetric f
definiteness, for instance,U(x)52 uxu. Then a natural defi-
nition of u is

u~x!5E
0

x

dx8e2U~x8! ~117!

and2`,u,`.
The Green function is thus simply unbounded diffusion

G~u,tuu0,0!5
1

A4pt
e2~u2u0!2/4t, ~118!
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which yields the Green function for the original equation:

P~x,tux0,0!5
1

A4pt
e2U~x!e2 S *x0

x dx8e2U~x8! D2
/4t. ~119!

We will be interested in the probability of displacementsz
betweent8 and t:
re

ie
re
Q~z,t,t8!5E dxP~x1z,tux,t8!P~x,t8ux050,0!,

~120!

which formally reads
g. 19,
such that

ly
Q~z,t,t8!5E dx
1

4pAt8~ t2t8!
e2U~x!2U~x1z!e2(*0

xdx8e2U~x8!)2/4t82(*x
x1zdx8e2U~x8!)2/4~ t2t8!. ~121!

Another convenient form is to write

Q~z,t,t8!5E du1du2

1

4pAt8~ t2t8!
d$z2@x~u11u2!2x~u1!#%e2u1

2/4t82u2
2/4~ t2t8!, ~122!

wherex(u) is the function implicitly defined by Eq.~117!.
Reflecting boundary at u50. Since we will be interested in landscapes with growing barriers such as depicted in Fi

it is useful in certain cases to introduce a reflecting boundary on the left. One can choose for definiteness a landscape
U(x→2`)→1`, defineu(x)5*2`

x dx8e2U(x8) and use a reflecting boundary atu50. This naturally avoids the particle
being in either one half space or the other. For instance, for the landscapeEb(x)52x, for which u(x)5ex the reflecting
boundary is atx52`. Because of reflecting boundaries one must choose the free propagator with]uG(u50)50, i.e.,

G~u,tuu8,t8!5u~u!
1

A4p~ t2t8!
~e2~u2u8!2/4~ t2t8!1e2~u1u8!2/4~ t2t8!!. ~123!

We will be interested in

Q~z,t,t8!5E dxP~x1z,tux,t8!P~x,t8ux052`,0!, ~124!

where we have chosen for convenience the initial condition atx052` ~and thusu050). This is a purely technical point on
the definition of the model and has no bearing on the physics. Indeed since we have chosenEb(x→2`)→2` and the initial
condition will be immaterial since it takes only a finite time in this model to reach finitex values and we are interested on
in the later~long time! behavior. Thus usingP(x,tux8,t8)5F(x)21G„u(x),tuu(x8),t8… one finds

Q~z,t,t8!5E dx
1

4pAt8~ t2t8!
e2U~x!2U~x1z!e2@~u~x!#2/4t8~e2@u~x1z!2u~x!#2/4~ t2t8!1e2@u~x1z!1u~x!#2/4~ t2t8!!. ~125!
as a
eed

i-
Let us conclude this section by indicating that a mo
general case can be solved~see also Appendix D!, i.e.,
brought back to

] tG~u,t !5]u
2G~u,t !2v]uG~u,t !, ~126!

which corresponds to

U~x!52S Eb~x!/21vE
0

x

dyeEb~y!/2D . ~127!

These models correspond to either valleys and barr
scaling differently and we will not study these models he
rs
.

We note that the directed model of Sec. III can be seen
particular case of the class of models introduced here. Ind
the case~126! corresponds to the diffusion inx given by

vt81At8w5u~x!2u~x0!5E
x0

x

e2U~x8!dx8, ~128!

wherew is a normalized Gaussian variable. In the fully d
rected case~largev) and for a judicious choice of the~ran-
dom! U(x) one can recover the directed models.
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B. Solution for linearly growing barriers

This corresponds to the model of Fig. 15. Again one c
either consider the symmetric landscape takingU(x)5
2uxu and thusx(u)5sgn(u)ln(11uuu) or one can take the
‘‘half landscape’’ with a reflexive barrier atx052`, which
we will discuss first.

The above formulas give in that case, for the single ti
packet,

P~x,tux0,0!5
2

A4pt
exe2e2x/4t. ~129!

The generating function of moments iŝelx&5G@(1
1l)/2#(4t)l/2/Ap. Thus one has

^x~ t !&5 1
2 ln~ t/c!, ~130!

^x2~ t !&2^x~ t !&25p2/8, ~131!

wherec5 lng (g is Euler’s constant!. In fact the packet has a
limit shape as one can see by performing the shiftx

5 1
2 ln(4t)1 x̃. Then the distribution ofx̃ is asymptotically

time independent:

P~ x̃,t !;
2

Ap
ex̃e2e2 x̃

. ~132!

Thus the packet has a constant width and simply spre
over a few wells~in Fig. 15! with its center moving logarith-
mically towards the right. Thus, since there is some deg
eracy of barriers one expects at/tw aging behavior.

Indeed one gets for the two time packet

Q~z,t,t8!5E
0

1`

duu
ez

2pAt8~ t2t8!

3e2u2/4t8~e2u2~ez21!2/4~ t2t8!

1e2u2~ez11!2/4~ t2t8!!. ~133!

This yields to an aging form for the distribution of dis
placements betweent8 and t, given by

Q~z,t,t8!5
ez

p S G

~ez21!21G2
1

G

~ez11!21G2D ,

G5
At2t8

At8
, ~134!

which, in the variablew5ez, is the sum of two Lorentzians
of width G, the first one centered aroundw51 and the sec-
ond one its mirror image~with the mirror atw50). This
result is natural considering that theratio of two independent
Gaussian variables with unit variancev5v1 /v2 is the
LorentzianP(v)51/@p(v211)# and that one has

z5x~u11u2!2x~u1!5 lnS 11
u2

u1
D5 ln~11Gv !,

~135!
n

e

ds

n-

whereu15At8v1 is the positive Gaussian variable represe
ing the diffusion process on the half line andu25Atv2 an-
other Gaussian variable representing the later diffusion p
cess, constrained so that the sumu11u2 remains positive,
hence the mirror. The total weight in the second packe
p5(arctanG)/p and in 12p the first.

Thus the first Lorentzian packet in Eq.~134! corresponds
to particles that have remained in the regionx(t8) while the
others have crossed to the mirror atx52` at least once and
came back to that region. We are mostly interested in
first packet~which always contains a fraction.1/2 of par-
ticles! but the second packet will always be there as a ma
technical feature of the model. If we chose instead the sy
metric environment, these would be two separate aging pa
ets, one aroundx(t8) and the other around2x(t8). Aging
then occurs only within each packet~there are diffusion
events between packets! while here one has aging in all th
packets.

Indeed the above distribution~134! clearly exhibits an
aging scaling form of the type

Q~z,t,t8!5Q̃S z,
t

t8
D 5Q̃S z,

h~ t !

h~ t8!
D , ~136!

thus h(t)5t in this model. The functionQ̃ indeed depends
on the times only throughG, which itself can be written as

G5 f F h~ t !

h~ t8!
G , ~137!

where the form off (x) andh(t) is univocally determined as
h(t)5t and f (x)5A12x. Thus, as in mean field@16# there
is a singularity at the beginning of the aging regime: theb
exponent is equal tob51/2.

It is interesting to note though that at the beginning of t
aging regimeG!1, there is anomalous behavior of the m
mentszn, because the Lorentzian has diverging moments

^zn&5E
21/G

1`

@ ln~11Gw!#n
dw

11w2
. ~138!

One finds in particular̂z&51/2ln(11G2)51/2ln(t/t8) ex-
actly.

^~z2^z&!n&5
G

2pA11G2E2`

1`

duunS 1

cosh@u#21/A11G2

1
1

cosh@u#11/A11G2D . ~139!

One finds that forn.1Š(z2^z&)n
‹;GG@n11# @i.e.,

P(u)5Ge2u# which is strong intermittence.
For widely separated time scales there is also adiffusion

regimein this model. At larget one gets

z5 ln~v !1 ln~ t !2 ln~ t8!, ~140!

where v has a Lorentzian distribution. Thus the diffusin
packet has afinite size ~note that since for a Lorentzia
^ ln(v)&50 ~inversion symmetry! one recovers the above re
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sult!. Thus there is a diffusion regime defined byz,t,t8→`
with z/ lnt and lnt/lnt8 fixed. It has no thermal fluctuations~it
is completely determinist! and the diffusion scaling function
reads

Q~z,t,t8!dz;
dz

lnt
dF z

lnt
2S 12

lnt8

lnt
D G . ~141!

As in SR mean-field models the aging regime smoot
merges in the diffusion regime@16#.

This model thus contains both an aging regime int/tw and
a diffusion regime with a different scaling. Only the FD
regime cannot be seen, since it has disappeared in the
tinuum limit.

Finally note that this model seems to violate the qua
static assumption. Indeed in a box of finite sizeL, or with
r

s-

s
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periodic boundary conditions and takingtw→`, the packet
will converge towards the equilibrium measure. SinceU(x)
52x this will result in an equilibrium packet offinite size.
However, the dynamical regimet2t8!t8 leads only to a
delta funtion packet atd(z), thus totally different from the
equilibrium one. We expect this feature to persist for t
model of Fig. 15, i.e., it is not an artifact of the continuo
limit.

Other quantities can be computed in this model. Let
give some examples:

Calculation of separation of replicas.One can also com-
pute the separation of two thermal replicas that are allow
to split at timetw . This quantity was studied in@19#.

One has
Q2~z,tw ,t!5E dydxP~y,tux,tw!P~y1z,tux,tw!P~x,twux052`,0! ~142!

5ezE
0

1`

du1E
0

1`

duu1G~u1 ,tuu!G~u1ez,tuu!G~u,twu0!, ~143!

G~u,tuu8!5
1

A4pt
FexpS 2

~u2u8!2

4t D1expS 2
~u1u8!2

4t D G , ~144!
the
cal
it

ns
.

ies.

ri-
of
and one finds

Q2~z,tw ,t!5
ez

p S G

~ez2m!21G2
1

G

~ez1m!21G2D ,

~145!

G5At~2tw1t!

~ tw1t!2
, m5

tw

tw1t
~146!

with t5t2t8. Note that this distribution is symmetric unde
z→2z because of the relationG21m251. For larget@tw
one finds that the distribution ofx5ez goes to a fixed half
Cauchy unit distributionu(x)1/@p(11x2)#. Thus for large
time we find that the two replicas evolve within a finite di
tance, but this distance islarger than the dynamicalqEA ,
which is zero for this problem.

Note that whent/tw!1 one recovers exactly the previou
Q(z,t,t8).

Nontrivial FDT violation ratio?It is interesting to know if
one can find finite-dimensional models with a nontrivial FD
violation ratioX as in mean field.

Here one can also compute the response to an additi
field, i.e., the remanent magnetization decay. The calcula
is indicated in Appendix E. Though it does appear that
some sense this model has a nontrivial FDT violation ratioX
similar to mean field we were not able to exhibit it in a cle
way. If one looks at the finite fraction of the packet that h
not touched the reflecting boundary, it has clearly a n
trivial X. But on any global quantity we have looked at t
al
n

n

r
s
-

boundary effects always introduce a cutoff that changes
expected result. We do not know if this is a purely techni
limitation, and if the model can be improved to really exhib
a nontrivial and properly definedX or if this is a more fun-
damental limitation. We still present some of the calculatio
in Appendix E and encourage others to improve on them

C. Solution of more general deterministic model

1. Barriers growing faster than linear

One can study cases whereEb(x);uxub with b.1. From
Sec. IV we expect that aging should have simple propert
For the ‘‘half landscape’’ model, usingu(x);exp(xb) for x
.0 and a left reflecting wall atu51, one finds an aging
regime with no thermal fluctuation:

z5 ln~At8v11At2t8v2!1/b2~ ln~At8v1!1/b, ~147!

z5~ lnAt !1/b2~ lnAt8!1/b, ~148!

wherev1 andv2 are uncorrelated normalized Gaussian va
ables. We have performed an expansion, in the regime
interestt@t8, e.g.,

@ ln~At8v1!#1/b;~ lnAt8!1/b1
ln~v1!

~ lnAt8!121/b
~149!

and dropped the contributions of the noise partsv1 andv2,
which vanish in the limit of larget and t8 sinceb.1.
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Thus aging becomes thermally deterministic as

z5 ln
h~ t !

h~ t8!
, ~150!

with h(t)5exp@C(lnt)1/b# andC5(1/2)1/b. These results are
strikingly similar with the result~95! of the previous section
In fact the result~150! is also similar to what was found in
mean field in@16#.

There is also a diffusion regime, which is identical to t
end of the aging one~it merges smoothly into it!. Indeed,

z5~ lnAt !1/bF12S lnt8

lnt D G1/b

. ~151!

2. Barriers growing slower than linear (subaging).

Similarly, in the subaging case whereEb(x);xb with b
,1 one finds

z5 ln~11Atv21At8v1!1/b2 ln~11At8v1!1/b. ~152!

Performing expansions this gives

z5
1

b

Atv2

~11At8v1!ln~11At8v1!1/b21
~153!

and thus

z5
1

b

At

At8lnAt8
v, ~154!

wherev is again a variable with a Cauchy distribution~we
have not determined the exact form using the wall!. This is
compatible with a Lorentzian aging packet but with

G5
1

b

At

At8lnAt8
~155!

consistent with

G5 f F h~ t !

h~ t8!
G , h~ t !5exp@C~ lnt !1/b#, ~156!

with a,1, again performing an expansion in smallt/tw and
with b51/2.

VI. CONCLUSION

In this paper we have investigated two time quantities
several one-dimensional diffusion models with random a
nonrandom environments. These quantities are function
the waiting timet85tw after the initial localized condition a
t50 and a later timet. The~averaged! distributionQ(z,t,t8)
of relative displacementsz5x(t)2x(t8) betweent and t8
was studied. Part of this study was numerical~in Sinai’s
model! and we have reached times up to 1015. Our results
showed that the times reached in a previous simulation@32#
were vastly insufficient. Our conclusions are different fro
those of@32#. Part of the study was analytical: we have co
puted two time quantities for a directed model related to
n
d
of

-
e

biased Sinai model and we have introduced several mo
that can be studied analytically. Our main results are
following.

We have identified three generic regimes for large tim
tw→`, t→`:

~i! At small separationst5t2tw!tw a quasiequilibrium
regime. Evidence for that regime was found in Sina
model. In that regimeQ(z,tw1t,tw) reaches a limitQ(z,t)
for tw→`. We have argued, and checked numerically, t
this distribution has some peculiarities. For larget it does
admit a limit Q(z) but this limit exhibits an algebraic tai
originating from rare configurations of the disorder. The m
ments of the relative displacement^zn(t)& with n.1/2 grow
unboundedly witht. We have also proposed an expressi
for the distributionQ(z,t) based on arguments on period
media.

We have also concluded, from our simulations and fro
physical arguments, that in Sinai’s model usual equilibriu
theorems hold in this quasiequilibrium regime~TTI and
FDT!. We have obtained a generalized expression of th
theorems to probability distributions such asQ(z,t,t8), and
shown that in this regimeQ(z,t) and the response functio
R(z,t) obey an exact differential relation. That these the
rems should hold in that regime is confirmed by recen
obtained rigorous bounds, as we have discussed. This un
an interesting situation of a quasiequilibrium regime with
lot of internal structure, wide fluctuations, and internal log
rithmic diffusion ~moments growing witht), which calls for
further studies.

~ii ! At large time separations,L(t);L(tw), there is a dif-
fusion regime. There the displacements scale asx(t)
;x(tw);L(t) and there are scaling forms for the probabili
distributions. In the model of Sec.~V! we have obtained this
regime analytically.

~ii ! Finally there is an intermediate aging regime. O
should first look at this regime in the probability of staying
a finite neighborhoodz of the same point betweent and t8,
which is generically of the form

Q~z,t,t8!5FFz,
h~ t !

h~ t8!
G . ~157!

In Sinai’s model with a bias~and in the directed model with
algebraic distribution of waiting times! one has aging with
h(t)5t. If the waiting times are even more widely distrib
uted, we find~157! ~for z50) with a large class of functions
h(t)@t. Similarly we also find this behavior in a solvab
model in Sec. V where a large class of functionsh(t) @in-
cluding subagingh(t)!t# can be obtained.

In the symmetric Sinai model~without a bias! we have
found strong numerical evidence for the aging behav
~157! with h(t); lnt ~for small finite z). In that model we
have found an even more striking result:

Q~z,t,t8!5Q0~z! f F h~ t !

h~ t8!
G , ~158!

i.e., a decoupled form for the aging regime. This suggests
interpretation of the aging regime in Sinai’s model as equ
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brated wells which get emptied on aging time scales. T
picture should be checked further.

Another consequence of our result for Sinai’s model
that, since the aging regime must be compatible with
diffusion one and we have found thath(t);L(t); lnt, there
must be asingularity in the two time diffusion front atz
50 to allow for a nontrivial aging regime.

We have given a general explanation of these regim
using scaling arguments on the next highest barrier enco
tered by the particle. This allows one to understand the ag
form in Sinai’s model. It also strongly suggests that the ag
in Sinai’s model could be studied analytically by only com
puting the distribution of next highest barrier~a purely geo-
metrical feature of the energy landscape!. These consider-
ations also lead to defining a class of models for which
distribution of these barriers can be computed exactly,
allows for predictions of the aging forms~157!.

Though we did get a consistent picture of aging in Sina
model, we cannot rule out completely other regimes.
instance, we have not explored in detail the behavior of
moments of the displacement in Sinai’s model. As in Sec.
one could say that at the very beginning of the aging reg
~i.e., lnt/lntw;11e fixed, a small fraction of particles hav
escaped from their well and have experienced Sinai’s di
sion to another well. One then gets

u^x~ t !2x~ tw!&un;S lnt

lntw
21D b

@ ln~ t2tw!#2n

;~ lntw!2n2b~ lnt2 lntw!b. ~159!

Thus by the same mechanism as in Sec. III the various
ments may have some different aging behaviors. We h
not attempted to obtain a precise estimate forb but a rough
estimate from our numerical simulations~Fig. 13! is consis-
tent with b51. If this is the case the momentn51/2 may
have an aging behavior ast/tw . The general issue of th
matching between the three regimes defined here deserv
be investigated further.

Another open problem is the behavior of the response
these regimes. It is important to determine how to defi
properly, and study beyond mean field, the way the equi
rium theorems are violated. Since, as we have shown, sam
to sample fluctuations play a strong role and one should
cus on distributions, one needs extensions of the mean-
ideas. As a first step we have given analytical express
and definitions of quantities adapted to low dimension a
which measure these violations. A detailed numerical a
further analytical investigation of these quantities is defer
to the future.

To summarize, we have found that some of the conce
defined in mean field are still useful in low dimension
models, though they have to be seriously adapted. Our s
should also help one to understand dynamical behavio
low dimensional but more complex systems such as dom
wall motion with disorder and coarsening in random sp
systems. Indeed activated processes~involving passage ove
barriers! become important away from mean field and
traslow anomalousdiffusion processesare expected to play a
crucial role. While the Sinai model is clearly oversimplifie
~the energy landscape is one dimensional! it still retains
is
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some of the features of these diffusion processes in hig
dimensional systems, such as barriers growing with dista
in configuration space~in some cases a direct connection c
be made, such as for the motion of a tip at a directed polym
in a random potential@44#!. Thus we expect that the variou
regimes defined here should be present in these system
well. In particular the properties unveiled here, such as
delta function singularity at the origin in the diffusion fron
and the existence of an aging regime, will clearly have c
sequences for domain wall motion, a question that dese
further investigations.
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APPENDIX A: DISCRETE VERSION OF SINAI MODEL
AND DIAGONALIZATION

In this Appendix we describe in detail the observables
discrete hopping models. We also describe the numer
method used in the paper. We establish some FDT relat
and other useful exact relations for discrete models.

Let us consider the Fokker Planck operatorHFP defined in
~7!. It can be written as

~HFP!n,mPm5
dPn

dt
52~Jn11,n2Jn,n21!, ~A1!

where the current flowing from siten21 to n is by definition

Jn,n215efnPn212e2fnPn . ~A2!

We need to compute the Green functionP(n,tun0 ,t0) (t
>t0), which is defined as the solution of~7! with initial
conditionP(n,t0un0 ,t0)5dnn0

. Following Ref.@23# it is use-
ful to map the FP equation onto a Schro¨dinger equation cor-
responding to a symmetric matrix. One has

P~n,tun0 ,t0!5e2 1/2 ~Un2Un0
!(

a
cn

acn0

a e2Eat, ~A3!

where theca are the eigenstates of the Schro¨dinger operator

~Hs!n,mcm
a 52~cn11

a 1cn21
a 22cn

a!1Vncn
a5Eacn

a

~A4!

in the potential

Vn5efn111e2fn22. ~A5!

As discussed in Ref.@23# the random operatorHs , which
is a version of supersymmetric quantum mechanics, is q
peculiar: all states are localized but the spectrum ofHs is
positive, without the Lifschitz tails usually associated to ra
dom one-dimensional potentials. An eigenfunction cor
sponding to the energy levelE050 is always exactly known,
i.e., cn

05Ze2Un/2. Whether or not this is the actual groun
state depends on whethercn

0 is normalizable, i.e., on the
boundary conditions. This is also related to the breaking
supersymmetry.
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The Schro¨dinger operator is a tridiagonal symmetric m
trix and is easily diagonalized for large sizeL. Let us first
consider the problem withL11 sitesk50,L with reflexive
boundaries. The same change of functionPn5eUn/2cn is
used and formula~A3! holds:

~HFP! i j 5d i 11,je
2f j1d i 21,je

f j 112d i , j~e2f i1ef i 11!,

~HFP!0 j5d1,je
2f12d0,je

f1,
~A6!

~Hs! i j 52~d i 11,j1d i 21,j !1d i , j~e2f i1ef i 11!,

~Hs!0 j52d1,j1d0,je
f1.

These boundary conditions simply amount to choosingf21
51` and fL1152` and restrict the problem to sitesk
50, . . . ,L.

1. Explicit expressions of quantities of interest and FDT
theorems in discrete version

The two time quantities of interest are correlation fun
tions of some operatorO(n,n8):

O~ t,t8!5^O@x~ t !,x~ t8!#&

5 (
n,n8

O~n,n8!P~n,tun8,t8!P~n8,t8un0 ,t050!

5(
a,b

e2Ea~ t2t8!2Ebt8

3(
n

(
n8

O~n,n8!e2Un/2cn
acn8

a cn8
b eUn0

/2cn0

b

~A7!

and response functions of some operatorR(n,n8)

R~ t,t8!5
d^R„x~ t !,x~ t8!…& f

d f ~ t8!
~A8!

defined by adding a short-duration pulse of an additio
infinitesimal force at timet8. The pulse is not necessaril
uniform in space. We define it to be of integrated stren
f en , i.e., fn→fn1 1

2 f en at time t8. The limit f→0 is then
taken withen fixed ~the response to a uniform field corre
sponds to choosingen51).

Using the definition P(n,tun8,t8)5(eHFP(t2t8))nn8 one
has

R1~ t,t8!5
1

2 (
n,n8,m8,n1

R~n,n8!P~n,tun8,t8!

3en1
B

n8m8

n1 P~m8,t8un0 ,t050! ~A9!

if the pulse is att82e, or

R~ t,t8!5
1

2 (
n,n8,m,n1

R~n,n8!P~n,tum,t8!

3en1
B

mn8

n1 P~n8,t8un0 ,t050! ~A10!
-

l

h

if the pulse is att81e ~Ito!. We have defined

B
mm8

n1 5
~dHFP!mm8

dfn1

5dm,m8~e2fmdmn1
2efm11dm11,n1

!

1dm21,m8e
fmdmn1

2dm11,m8e
2fm11dm11,n1

.

~A11!

We will now establish~i! the FDT relations valid when
equilibrium is attained and~ii ! some exact relations alway
valid. These equations will relate the correlation functions
the operatorO(n,n8) with response function of the operato
R(n,n8) ~for a fixede). There must be a relation betweenR
andO for these to hold, which is

em

2
@R~n,m!1R~n,m21!#5O~n,m!2O~n,m21!.

~A12!

This relation generalizes the usual relationR(x,x8)
5]x8O(x,x8) ~see next section! valid for continuous systems
and for the response to a uniform field. We start with t
following identity:

]O~ t,t8!

]t8
5 (

n,n8,m,m8
O~n,n8!P~n,tum,t8!Hmm8~dmn8

2dm8n8!P~m8,t8un0 ,t050!. ~A13!

Note the simplification:

Hmm8~dmn82dm8n8!5~dm11,m8e
2fm81dm21,m8e

fm811!

3~dmn82dm8n8!. ~A14!

Now the following exact relation can be established:

(
n8,m8

O~n,n8!Hmm8~dmn82dm8n8!Pm8

5
1

2 (
n8,n1

R~n,n8!en1
B

mn8

n1 Pn81
1

2
R~n,m!~Jm11,mem11

1Jm,m21em! ~A15!

for any set ofPm , provided the above relation~A12! holds
between the operatorsO and R @J being defined as in Eq
~A2!#. It yields to

]Oe~ t,t8!

]t8
5Re~ t,t8!1

1

2(n,m
R~n,m!P~n,tum,t8!

3@Jm11,m~ t8!em111Jm,m21~ t8!em#,

~A16!

where Jm,m21(t8)5efmP(m21,t8un0 ,t050)
2e2fmP(m,t8un0 ,t050) and we are using the Ito respons
The indexe is a reminder that we are working for a fixeden .
When equilibrium is attained, i.e., either in the limitt8→
1` before L→1` or, if there is an FDT regime in the
problem ~see text, this usually entails averaging all the
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correlations over disorder!, then one can set the current
zero,J50. Then the fluctuation-dissipation relation holds

]O~ t,t8!

]t8
5R~ t,t8!. ~A17!

2. Applications

Let us start with responses to uniform fieldsen51.
The choiceO(m,n)5nm and R(n,m)5n is consistent

with Eq. ~A12!. It gives

]^x~ t !x~ t8!&

]t8
5

d^x~ t !& f

d f ~ t8!
. ~A18!

The choice O(m,n)5(n2m)2 and R(n,m)522(n
2m) is consistent with Eq.~A12!. It gives

]^@x~ t !2x~ t8!#2&

]t8
522

d^@x~ t !2x~ t8!#& f

d f ~ t8!
. ~A19!

The general choice

O~n,m!5 1
2 „Õ~n,m!1Õ~n,m11!…,

R~n,m!5Õ~n,m11!2Õ~n,m! ~A20!

satisfies the condition~A12!.
Thus one can chooseÕ(n,m)5dz2(n2m) and obtain the

exact relation:
] t8

1

2
@Q~z,t,t8!1Q~z11,t,t8!#

5R~z11,t,t8!2R~z,t,t8! ~A21!

1
1

2(m @P~z111m,tumt8!2P~z1m,tumt8!#

3@Jm11,m~ t8!1Jm,m21~ t8!#. ~A22!

This is the discrete equivalent of the continuous relat
derived in the next section@Eq. ~B23!#.

One can also wonder what happens when a bias is app
on a finite size periodic ring. There astationarydistribution
when a fixed current is reached at larget8. There is an ex-
tension of the FDT theorem. Indeed one has

]O~ t,t8!

]t8
5R~ t,t8!1J(

n,m
R~n,m!P~n,tum,t8!.

~A23!

Note thatJ is simply related to the velocity~see, e.g.,
@44#!.

We now study responses to nonuniform fields. One ap
cation consists in choosing, for a givenp,

O~p!~n,m!5dnmdnp , R~p!~n,m!5dnp ,

em
~p!5dpm2dp,m21 , ~A24!

which is consistent with Eq.~A12!. It yields
] t8^dn~ t !,n~ t8!dn~ t !,p&5R~p!~ t,t8! ~A25!

1 1
2 $Jp,p21~ t8!@P~ptup21,t8!1P~ptup,t8!#2Jp11,p~ t8!@P~ptup,t8!1P~ptup11,t8!#%,

~A26!

whereR(p)(t,t8)5d/d f^dn(t),p& f e(p))u f 50 ande (p) is the above staggered field, which takes a value of11 at sitep and21 at
site p11 ~it corresponds simply to changing the potential only at sitep).

One can also add together these responses and obtain

] t8^dn~ t !,n~ t8!&5(
p

R~p!~ t,t8! ~A27!

1
1

2(p
$Jp,p21~ t8!@P~ptup21,t8!1P~ptup,t8!#2Jp11,p~ t8!@P~ptup,t8!1P~ptup11,t8!#%. ~A28!

One has the following expression:

(
p

R~p!~ t,t8!5e2fm~Am,m,m2Am21,m,m!1efm~Am,m,m212Am21,m,m21! ~A29!

2efm11~Am11,m,m2Am,m,m!2e2fm11~Am11,m,m112Am,m,m11!, ~A30!

with An,m,n85P(ntumt8)P(n8t8un00). A simpler expression is
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(
p

R~p!~ t,t8!5@e2fmP~mt8!1efmP~m21,t8!#@P~mtumt8!1P~m21,tum21,t8!2P~m21,tum,t8!2P~m,tum21,t8!#.
u

on
re
w

T
a

la

le

b-

h

n
ui-
at

at

ce

n

d

Note that we are freely reindexing the sums and thus ass
ing that the boundary conditions are periodic.

The above response is in fact the response to an additi
random uncorrelated potential. However, the above exp
sions allow one to compute it directly without doing any ne
averages.

APPENDIX B: FDT AND USEFUL EXACT RELATIONS
FOR PROBABILITY DISTRIBUTIONS

In this Appendix we derive a generalization of the FD
theorem on the probability distribution. It can then be used
a generating functional to obtain a hierarchy of FDT re
tions on all moments of the typêx(t)nx(t8)m&.

We are interested in the joint probability that the partic
is in x at t8 and then inx at t.

P̂~xt,x8t8ux0t0!5P~x,tux8,t8!P~x8,t8ux0,0!. ~B1!

Let us recall the forward and backward FP equations:

] tP~xtux8t8!5T]xD~x!]xP~xtux8t8!

2]xD~x!F~x!P~xtux8t8!, ~B2!

] t8P~xtux8t8!52T]x8D~x8!]x8P~xtux8t8!

2D~x8!F~x8!]x8P~xtux8t8!. ~B3!

We now derive the differential equation for the joint pro
ability P̂:

] t8P̂5@] t8P~x,tux8,t8!#P~x8,t8u0,0!1P~x,tux8,t8!

3@] t8P~x8,t8u0,0!#, ~B4!

] t8P̂52E dydy8P~x,tuy,t8!~@HFP,dx8# !yy8P~y8,t8u0,0!,

~B5!

with

@HFP,dx8#5@T]D]2]DF,dx8#5T]D@],dx8#1@],dx8#

3~TD]2DF !. ~B6!

The last term is the currentJ52(TD]2DF)P. In the
FDT regime~for large t8) the current is expected to vanis
and we are left with the following equations forP̂:

] t8P̂52E dydy8P~x,tuy,t8!

3~T]D@],dx8# !yy8P~y8,t8u0,0!, ~B7!

] t8P̂5]x8E dydy8P~x,tuy,t8!~T]Ddx8!yy8P~y8,t8u0,0!,

~B8!
m-

al
s-

s
-

] t8P̂52T]x8$@]x8P~x,tux8,t8!#D~x8!P~x8,t8u0,0!%.
~B9!

Finally we obtain

] t8P̂52T]x8
2

@D~x8!P̂#

1T]x8$P~x,tux8,t8!]x8@D~x8!P~x8,t8u0,0!#%

~B10!

and sincedHFP/dh(t8)52]x8D(x8)

] t8P̂52T]x8
2

@D~x8!P̂#2T]x8

d P̂h
1

dh~ t8!
, ~B11!

where we defineP̂h
1(xtux8t8ux00), the joint probability when

a field pulse has been applied att82e. This is the equation
that relates exactly the joint probability distributio
P̂(xt,x8t8ux0t0) to the response distribution in the quasieq
librium FDT regime. It was obtained by setting the current
time t8 to zero.

A similar equation can be derived for the field applied
time t81e. From Eq.~B10! one has also that

] t8P̂52T]x8

d P̂h

dh~ t8!
, ~B12!

where P̂h(xtux8t8ux00) the joint probability when a field
pulse has been applied att81e. This corresponds to Ito’s
prescription for the response functions sin
d P̂h(xt8ux8t8ux00)/dh(t8)50.

From this it is immediate to derive a similar FDT equatio
for the probability function Q(z,t,t8)5*dxdx8d(z2x

1x8) P̂(xt,x8t8ux0t0). Multiplying the above equation by the
delta function, integrating with respect tox and x8, and in-
tegrating by parts one gets

] t8Q~z,t,t8!52T]z
2Q~z,t,t8!1T]z

dQh
1~z,t,t8!

dh~ t8!

1T]zE dx1dx2d~z2x11x2!

3P~x1 ,tux2 ,t8!J~x2! ~B13!

in the the long time regimet8→` the current vanishes an
we are left with the FDT regime of the equation

] t8Q~z,t,t8!52T]z
2Q~z,t,t8!1T]z

dQh
1~z,t,t8!

dh~ t8!
.

~B14!

Similarly with the Ito prescription:
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] t8Q~z,t,t8!5T]z

dQh~z,t,t8!

dh~ t8!
. ~B15!

We can check that this equation is more general than
conventional FDT theorem, and indeed gives back the u
FDT result. Defining

B~ t,t8!FDT5E dzz2QFDT~z,t,t8! ~B16!

and inserting it in the generalized equation gives

] t8B~ t,t8!52TE dzz2]z
2Q~z,t,t8!

1TE dzz2]z

dQh
1~z,t,t8!

dh~ t8!
~B17!

after integration by parts this gives simply

] t8B~ t,t8!522T22T
d

dh~ t8!
E dzzQh

1~z,t,t8!

522T@11R1~ t,t8!2R1~ t8,t82e!#

522TR~ t,t8!. ~B18!

With the Ito prescription one has simply

] t8B~ t,t8!522T
d

dh~ t8!
E dzzQh~z,t,t8!522TR~ t,t8!

~B19!

usingR(t8,t8)5R(t8,t81e)50.
A motivation is to find a generalized form to this equati

which would be valid in the aging regime as well.

Exact relations and FDT violation ratios

It is useful also to give the exact relations~always valid!
for averages of operators. They allow one to obtain expl
the FDT violation ratios.

We put back the current term that we have neglected.
obtain then instead of Eq.~B10! the ~still! exact relation

] t8P̂1T]x8
2

@D~x8!P̂#

2T]x8@P~x,tuy,t8!]x8D~x8!P~x8,t8u0,0!#

5E dydy8P~x,tuy,t8!@],dx8#yy8J~y8t8u00!,

~B20!

with J(y8t8u00)52D(y8)@T]y82F(y8)#P(y8t8u00). We
will use the Ito response here.

Let us study a general observableO(x,x8). Multiplying
the above equation, integrating overx andx8, and integrating
by parts ~assuming no contributions from boundaries! one
has an exact relation that relates the averages ofO(x,x8) and
of O8(x,x8)5]x8O(x,x8). Defining
e
al

it

e

V0~ t,t8!5] t8^O@x~ t !,x~ t8!#&2T
d^O8~x,x8!&h

dh~ t8!

[@12XO~ t,t8!#] t8^O&~ t,t8! ~B21!

the relation reads

V0~ t,t8!5E dxdx8P~x,tux8,t8!O8~x,x8!J~x8t8u00!.

~B22!

We have defined above the FDT violation ratioX0
associated with the operatorO. If the other response
was used there would be in addition a ter
2T^D@x(t8)#O2@x(t),x(t8)#& in the above equation with
O2(x,x8)5]x8

2 O(x,x8). Again for the Ito response the sec
ond derivative term is absent.

We will also give an exact relation for therelative dis-
placements. Let us consider an operatorO(z). Then one has

] t8^O~z!&1T
d^O8~z!&h

dh~ t8!
5E dx1dx2O8~x12x2!

3P~x1tux2t8!J~x2t8u00!.

~B23!

And thus one can define also a generalized FDT ratio

X̃O~ t,t8!

512

E dx1dx2O8~x12x2!P~x1tux2t8!J~x2t8u00!

] t8^O~z!&
.

~B24!

APPENDIX C: BOUNDS

Here we illustrate the bounds recently proposed by C
@46#. We use the framework of the generalized FDT relati
of the preceding section and our derivation is thus tech
cally slightly different, though identical in spirit to@46#. We
work directly with the FP equation and a space depend
diffusion coefficient.

The nice observation of CDK is that the current that a
pears in Eq.~B22! also appears in theH theorem, which
states that the free energy

H~ t8!5E dx8P~x8t8u00!@TlnP~x8,t8u00!2U~x8!#

~C1!

is always decreasing with

dH~ t8!

dt8
52E dx8

@J~x8t8u00!#2

D~x8!P~x8,t8u00!
. ~C2!

The CKS bounding amounts to boundV0(t,t8) defined in
Eq. ~B21! by
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uV0~ t,t8!u<UdH~ t8!

dt8
U1/2E dxdx8P~x,tux8,t8!O8~x,x8!2D~x8!P~x8,t8u00! ~C3!

5UdH~ t8!

dt8
U1/2

^$O8@x~ t !,x~ t8!#2D@x~ t8!#%&1/2 ~C4!

using the Cauchy-Schwartz~CS! inequality and*dxP(x,tux8t8)51.
Note also that disorder averages can be bounded similarly by applying the CS inequality at the same time to the

over x,x8 and configurations.
One then gets

uV0~ t,t8!u<UdH̄~ t8!

dt8
U1/2

u^O8@x~ t !,x~ t8!#2D@x~ t8!#&u1/2. ~C5!

Or, as pointed out by CDK, in an integrated version,

U E
t8

t

dsV0~ t,s!U<E
t8

t

dsS UdH̄~s!

ds
U1/2

u^O8@x~ t !,x~s!#2D@x~s!#&u1/2D . ~C6!

If we chooseO(x,x8)5xx8 andD(x)51 one gets

U^x2~ t !&2^x~ t !x~ t8!&2TE
t8

t

R~ t,t8!U<@^x2~ t !&#1/2E
t8

t

dsS UdH̄~s!

ds
U1/2D . ~C7!

One can also derive bounds using Eq.~B23! for the relative displacements. Using CS, Eq.~B23! leads to the bound

U] t8^O~z!&1T
^dO8~z!&h

dh~ t8!
U<u^O8@x~ t !2x~ t8!#2&u1/2UdH̄~ t8!

dt8
U1/2

, ~C8!

which can be rewritten as

U] t8E dzO~z!Q~z,t,t8!1T
d

dh~ t8!
E dzO8~z!

dQh~z,t,t8!

dh~ t8!
U<U E dzO82~z!Q~z,t,t8!U1/2UdH̄~ t8!

dt8
U1/2

. ~C9!
ate
pes
This yields in particular

u] t8B~ t,t8!12TR~ t,t8!u<B~ t,t8!1/2UdH̄~ t8!

dt8
U1/2

~C10!

or its integrated version

U2B~ t,t8!12TE
t8

t

R~ t,t8!U<E
t8

t

dsB~ t,s!1/2UdH̄~s!

ds
U1/2

.

~C11!

More generally the bound can be used to constrain theX̃O
defined in Eq.~B24!:

u12X̃O~ t,t8!u<
^O82&~ t,t8!udH̄~ t8!/dt8u1/2

u] t8^O&~ t,t8!u
. ~C12!
APPENDIX D: MAPPINGS OF SEVERAL MODELS

The method of change of variables allows one to rel
exactly members of a class of landscape. Let two landsca
and their corresponding Green’s functions be

@Eb~x!,U~x!#↔P~x,tux0 ,0!, ~D1!

@Eb8~x!,U8~x!#↔P8~x,tux0 ,0!. ~D2!

If there exists a functiony(x) such that

Eb8~x!5Eb@y~x!#12ln
dy~x!

dx
,

U8~x!5U@y~x!#2 ln
dy~x!

dx
, ~D3!

then the two Green functions are related through

P8~x,tux0 ,0!5
dy~x!

dx
P„y~x!,tuy~x0!,0…. ~D4!
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In particular one can map

@0,U~x!#↔@2U„x~u!…,0# ~D5!

and

@Eb~x!,0#↔@0,1
2 Eb„x~u!…#. ~D6!

It is interesting in general because the new functio
U„x(u)… or Eb„x(u)… are usually better behaved at largeu.

Two general scenarios exist, confining potentials and
confining ones. Let us take rapidly growing landscap
@Eb(x),U(x)# as in the last section and map them on
@0,U8(u)#. Then typically one hasU8(u);blnu at largeu.
The caseb.0 is confining and corresponds to the ca
where barriers grow faster than valleysEb(x).22U(x).
The caseb,0 is fast diffusion and corresponds to the ca
where barriers grow slower than valleysEb(x),22U(x).

Finally note that time dependent mappings could also
built using the following propagator:

Q~u,t !5
1

A4pet2t021
e2~u2u0e~ t2t0!/2!2/4~et2t021!,

~D7!

which satisfies

] tQ~u,t !5]u]uQ~u,t !2 1
2 ]uuQ~u,t !. ~D8!

APPENDIX E: RESPONSE IN THE AGING MODEL

We start from the exact equation obeyed by the Brown
diffusion propagator:

R~utuu8t8!5
1

A4pT~ t2t8!
e2~u2u8!2/4T~ t2t8!. ~E1!

The joint propagator

R̂~utuu8t8uu0t0!5R~utuu8t8!R~u8t8uu0t0! ~E2!

satisfies the exact equation

] t8R̂52T]u8
2 R̂12T]u8@R~utuu8t8!]u8R~u8t8uu0t0!#,

~E3!

] t8R̂522T]u8

dR̂h

dh~ t8!
. ~E4!

This is valid for the free~unbounded! Brownian motion
and yields, for instance,R(t,t8)5X] t8C(t,t8) with X
51/(2T). A bounded Brownian motion would instead co
verge to equilibrium withX51/T and satisfy the FDT equa
tion with 2T replaced byT in the last term.

One can now use the change of variableF(x)d/dx

5d/du and R̂(utuu8t8uu0t0)5F(x)F(x8) P̂(xtux8t8ux0t0)
and obtain for the model studied previously, the exact eq
tion valid in the unbounded case:
s

-
s

e

e

n

a-

] t8P̂52T]x8
2

@F~x8!2P̂#

1T]x8$P~xtux8t8!]x8@F~x8!2P~x8t8ux0t0!#% ~E5!

1T]x8$P~xtux8t8!F~x8!]x8@F~x8!P~x8t8ux0t0!#%.

~E6!

Since the diffusion coefficient isD(x8)5F(x8)2 in this
model, and the response isdHFP/dh(t8)52]x8D(x8) the
above equation can be rewritten in a form very similar—b
not identical—to the above general FDT equation:

] t8P̂52T]x8

d P̂h

dh~ t8!
2]x8@P~xtux8t8!J~x8t8!#. ~E7!

The last term cannot be simplified further and involv
the currentJ(x8t8)52TF(x8)]x8@F(x8)P(x8t8ux0t0)# of
the model. This equation is always valid for our model, ev
in the out-of-equilibrium regime.

The idea is that in the nontrivial aging regime all thr
terms of the above equation will be roughly of the sam
order in t8 and thus it will effectively lead to a nontrivia
FDT ratio X(t,t8).

One can use, e.g., this equation to study the correla
C(t,t8)5^x(t)x(t8)&. Multiplying by xx8 and integrating
over x andx8 one obtains

R~ t,t8![
d^x~ t !h&

dh~ t8!
5X~ t,t8!] t8^x~ t !x~ t8!&, ~E8!

where we have defined

X~ t,t8!5
1

T
S 12

E dxdx8xP~xtux8t8!J~x8t8!

] t8^x~ t !x~ t8!&
D .

~E9!

One can also define

XB~ t,t8!52
1

2
XC~ t,t8!S 12

] t8^x~ t8!2&

2] t8^x~ t !x~ t8!&
D 21

.

~E10!

Introducing

A~ t8,t!5^x@At8u11Atu2#u1F†x@At8u1#‡&, ~E11!

D~ t8,t!5K S u12u2At8

t D x@At8u1#F†x@At8u11Atu2#‡L .

~E12!

One finds

XC5
1

T

D

A1D
, ~E13!

XB52
1

2T

D

D1A2A0
, ~E14!

whereA05A(t8,0).
Thus one gets, for instance,
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XB;2
x

2T

^e~u1!e~u11xu2!& ln~11At8uu11xu2u!2^ ln~11At8uu1u!&

^@~xu12u2!/~u11xu2!#e~u1!e~u11xu2!ln~11At8uu11xu2u!
~E15!

with x5Att8. The divergences make the calculation depend strongly on the boundary conditions. As explained in the
have not pursued it further.

APPENDIX F: DIRECTED MODEL CALCULATIONS

Defining

F~s!5
1

s1W
~F1!

we will use that

W

s1W
512sF~s!,

1

~s11W!~s21W!
5

F~s1!2F~s2!

s22s1
,

W

~s11W!~s21W!
5

s2F~s2!2s1F~s1!

s22s1
. ~F2!

Let us compute the averaged probability that the particle advances bym betweent8 and t5t81t:

Q~m,t,t8!5^d@x~ t !2x~ t8!2m#&5 (
n>0

P~n1m,n,t!P~n,0,t8!. ~F3!

The double LT,

Q~m,s1 ,s2!5E
0

`E
0

`

dtdt8e2s1t2s2t8P~m,t,t8!,

can be calculated:

Q~m,s1 ,s2!5 (
n>0

P~n1m,n,s1!P~n,0,s2!5Fdm0S 1

~s11W!~s21W!
D 1~12dm0!S 1

s11WD S W

~s11W!~s21W!
D

3S W

s11WD m21G (
n50

` S W

s21WD n

. ~F4!

It yields the result given in the text.
Let us now estimate the probabilityPtw

(W) that at timetw the walker is on a site with a waiting timeW51/t.

Its Laplace transform with respect totw ~Laplace variables2) is simply given by

(
n

d~W2Wn!
1

s21Wn
)

k5n0

n21
Wk

s21Wk
. ~F5!

This easily leads to

1

s2
P~W!

1

s21W

1

F~s2!
. ~F6!

By Laplace inversion this yields for the distribution of the waiting timet̃51/W:

Ptw
~ t̃!d t̃5

sin~pm!

p

d t̃

tw
S tw

t̃
D 11mE

0

1

e2~ tw / t̃!~12u!
um21

G@m#
. ~F7!
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